A laboratory studying severe storms such as tropical cyclones, heavy rainfall, and high winds and atmospheric environmental issues such as turbulence and dispersion.  台風・豪雨・暴風など暴風雨現象や大気乱流・拡散など大気環境に係わる諸問題の研究をしています。

Division of Atmospheric and Hydrospheric Disasters Disaster Prevention Research Institute Kyoto University
京都大学 防災研究所 気象・水象災害研究部門 暴風雨・気象環境研究分野(大学院理学研究科地球惑星科学専攻大気科学分科担当)
Tetsuya Takemi's Web Sites(教授 理学博士 竹見哲也)

Publications / 出版

Peer-reviewed Articles / 学術論文

  1. 138. Xinyu Chen, Ram Avtar, Deha Agus Umarhadi, Albertus Stephanus Louw, Sourabh Shrivastava, Ali P. Yunus, Khaled Mohamed Khedher, Tetsuya Takemi, Hideaki Shibata, 2022: Post-typhoon forest damage estimation using multiple vegetation indices and machine learning models. Weather and Climate Extremes, 100494, doi:10.1016/j.wace.2022.100494
  2. 137. Nayak, S., T. Takemi, and S. Maity, 2022: Precipitation and temperature climatologies over India: A study with AGCM large ensemble climate simulations. Atmosphere, 13, 671, doi:10.3390/atmos13050671
  3. 136. 髙舘祐貴,竹見哲也,奥田泰雄,2022:領域気象モデルWRFで得られた風向・風速を入力データとしたスペクトルモーダル解析による超高層建築物の最大応答加速度の推定とその精度検証.日本風工学会論文集,Vol. 47, No. 2, pp. 27-38, doi:10.5359/jwe.47.27
  4. 135. Horiguchi, M., K. Tatsumi, A.-P. Poulidis, T. Yoshida, and T. Takemi, 2022: Large-scale turbulence structures in the atmospheric boundary layer Observed above the Suburbs of Kyoto City, Japan. Boundary-Layer Meteorology, Vol. 184, pp. 333-354, doi:10.1007/s10546-022-00707-8
  5. 134. Nakamae, K, and T. Takemi, 2022: Relationships between the development of convective mixed layer and the occurrence of dust weather in arid and semi-arid regions of East Asia. International Journal of Climatology, Vol. 42, pp. 3076-3093, doi:10.1002/joc.7408
  6. 133. Shimura, T., N. Mori, D. Urano, T. Takemi, and R. Mizuta, 2022: Tropical cyclone characteristics represented by the ocean wave coupled atmospheric global climate model incorporating wave-dependent momentum flux. Journal of Climate, Vol. 35, pp. 499-515, doi:10.1175/JCLI-D-21-0362.1
  7. 132. Nakayama, H., T. Takemi, and T. Yoshida, 2021: Large-eddy simulation of plume dispersion in the central district of Oklahoma City by coupling with a meso-scale meteorological simulation model and observation. Atmosphere, Vol. 12, 889, doi:10.3390/atmos12070889
  8. 131. Wu, P., and T. Takemi, 2021: The impact of topography on the initial error growth associated with moist convection. Scientific Online Letters on the Atmosphere, Vol. 17, pp. 134-139, doi:10.2151/sola.2021-024
  9. 130. Duan, G., and T. Takemi, 2021: Predicting urban surface roughness aerodynamic parameters using random forest. Journal of Applied Meteorology and Climatology, Vol. 60, pp. 999-1018, doi:10.1175/JAMC-D-20-0266.1
  10. 129. Poulidis, A.-P., S. Biass, G. Bagheri, T. Takemi, and M. Iguchi, 2021: Atmospheric vertical velocity - a crucial component in understanding proximal deposition of volcanic ash. Earth and Planetary Science Letters, Vol. 566, 116980, doi:10.1016/j.epsl.2021.116980
  11. 128. Takemi, T., A.-P. Poulidis, and M. Iguchi, 2021: High-resolution modeling of airflows and particle deposition in complex terrain of Sakurajima Volcano. Atmosphere, Vol. 12, 325, doi:10.3390/atmos12030325
  12. 127. Mori, N., T. Takemi, Y. Tachikawa, H. Tatano, T. Shimura, T. Tanaka, T. Fujimi, Y. Osakada, A. Webb, and E. Nakakita, 2021: Recent nationwide climate change impact assessments of natural hazards in Japan and East Asia. Weather and Climate Extremes, Vol. 32, 100309, doi:10.1016/j.wace.2021.100309
  13. 126. Duan, G., and T. Takemi, 2021: Gustiness in thermally-stratified urban turbulent boundary-layer flows and the influence of surface roughness. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 208, 104442, doi:10.1016/j.jweia.2020.104442
  14. 125. Nayak, S., and T. Takemi, 2021: Atmospheric driving mechanisms of extreme rainfall events in July of 2017 and 2018 in western Japan. Dynamics of Atmospheres and Oceans, Vo. 93, 101186, doi:10.1016/j.dynatmoce.2020.101186.
  15. 124. Unuma, T., and T. Takemi, 2021: Rainfall characteristics and their environmental conditions during the heavy rainfall events over Japan in July 2017 of 2018. Journal of the Meteorological Society of Japan, Vol. 99, pp. 165-180, doi:10.2151/jmsj.2021-009
  16. 123. Yoshida, T., and T. Takemi, 2021: Spatial characteristics of turbulent organized structures within the roughness sublayer over idealized urban surface with obstacle-height variability. Environmental Fluid Mechanics, Vol. 21, pp. 129-154, doi:10.1007/s10652-020-09764-4.
  17. 122. Morimoto, J., M. Aiba, F. Furukawa, Y. Mishima, N. Yoshimura, S. Nayak, T. Takemi, H. Chihiro, T. Matsui, and F. Nakamura, 2021: Assessment of windthrow risk by typhoons with heavy precipitation in northern Japan. Forest Ecology and Management, Vol. 479, 118521, doi:10.1016/j.foreco.2020.118521.
  18. 121. Almahrouqi, S., M. Saber, T. Takemi, S. A. Kantoush, and T. Sumi, 2020: Long term spatio-temporal analysis of annual, seasonal, and extreme precipitation trend over MENA region. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), Vol. 76, pp. I_37-I_42, doi:10.2208/jscejhe.76.2_I_37
  19. 120. Nayak, S., and T. Takemi, 2020: Clausius-Clapeyron scaling of extremely heavy precipitations: Case studies of the July 2017 and July 2018 heavy rainfall events over Japan. Journal of the Meteorological Society of Japan, accepted, doi:10.2151/jmsj.2020-058.
  20. 119. Nayak, S., and T. Takemi, 2020: Robust responses of typhoon hazards in northern Japan to global warming climate: Cases of landfalling typhoons in 2016. Meteorological Applications, Vol. 27, e1954, doi:10.1002/met.1954.
  21. 118. Yanase, T., S. Nishizawa, H. Miura, T. Takemi, and H. Tomita, 2020: New critical length for the onset of self-aggregation of moist convection. Geophysical Research Letters, Vol. 47, e2020GL088763, doi:10.1029/2020GL088763.
  22. 117. Nayak, S., and T. Takemi, 2020: Typhoon induced precipitation characterization over northern Japan: A case study for typhoons in 2016. Progress in Earth and Planetary Science, Vol. 7, 39, doi:10.1186/s40645-020-00347-x
  23. 116. Nakayama, H., and T. Takemi, 2020: Development of a data assimilation method using vibration equation for large-eddy simulations of turbulent boundary layer flows. Journal of Advances in Modeling Earth Systems, Vol. 12, e2019MS001872, doi:10.1029/2019MS001872.
  24. 115. Takemi, T., T. Yoshida, M. Horiguchi, and W. Vandebauwhede, 2020: Large-eddy-simulation analysis of airflows and strong wind hazards in urban areas. Urban Climate, Vol. 32, 100625, doi:10.1016/j.uclim.2020.100625.
  25. 114. Takemi T., and S. Yamasaki, 2020: Sensitivity of the intensity and structure of tropical cyclones to tropospheric stability conditions. Atmosphere, 11, 411, doi:10.3390/atmos11040411.
  26. 113. Takemi, T., and T. Unuma, 2020: Environmental factors for the development of heavy rainfall in the eastern part of Japan during Typhoon Hagibis (2019). Scientific Online Letters on the Atmosphere, Vol. 16, pp. 30-36, doi:10.2151/sola.2020-006.
  27. 112. Takemi, T., and R. Ito, 2020: Benefits of high-resolution downscaling experiments for assessing strong wind hazard at local scales in complex terrain: A case study of Typhoon Songda (2004). Progress in Earth and Planetary Science, Vol. 7, 4, doi:10.1186/s40645-019-0317-7.
  28. 111. 森 信人,竹見哲也,金 洙列,澁谷容子,安田誠宏,中條壮大,二宮順一,志村智也,2019:高解像度大気モデルと高潮・波浪結合モデルを用いた2018年台風21号による高潮・波浪の予測実験.土木学会論文集B2(海岸工学),Vol. 75, No. 2, pp. I_283-I_288. doi:10.2208/kaigan.75.I_283.
  29. 110. 金 洙列,森 信人,竹見哲也,澁谷容子,安田誠宏,中條壮大,志村 智也,二宮順一,2019:高潮・波浪結合モデルを用いた2018年台風21号による高潮・波浪の推算実験.土木学会論文集B2(海岸工学),Vol. 75, No. 2, pp. I_277-I_282. doi:10.2208/kaigan.75.I_277.
  30. 109. Takemi, T., and T. Unuma, 2019: Diagnosing environmental properties of the July 2018 Heavy Rainfall event in Japan. SOLA, Vol. 15A, pp. 60-65, doi:10.2151/sola.15A-011.
  31. 108. Pouldis, A.-P., T. Takemi, M. Iguchi, 2019: The effect of wind and atmospheric stability on the morphology of volcanic plumes from vulcanian eruptions. Journal of Geophysical Research - Solid Earth, Vol. 124, pp. 8013-8029, doi:10.1029/2018JB016958.
  32. 107. Poulidis, A.-P., T. Takemi, M. Iguchi, 2019: Experimental high resolution forecasting of volcanic ash hazard at Sakurajima, Japan. Journal of Disaster Research, Vo. 14, pp. 786-797, doi: 10.20965/jdr.2019.p0786.
  33. 106. Takemi, T., 2019: Impacts of global warming on extreme rainfall of a slow-moving typhoon: A case study for Typhoon Talas (2011). SOLA, Vol. 15, pp. 125-131, doi:10.2151/sola.2019-023.
  34. 105. Nayak, S., T. Takemi, 2019: Quantitative estimations of hazards resulting from Typhoon Chanthu (2016) for assessing the impact in current and future climate. Hydrological Research Letters, Vol. 13, pp. 20-27, doi: 10.3178/hrl.13.20
  35. 104. Nayak, S., T. Takemi, 2019: Dependence of extreme precipitable water events on temperature. Atmósfera, Vol. 32, pp. 159-165, doi: 10.20937/ATM.2019.32.02.06.
  36. 103. Nayak, S., T. Takemi, 2019: Dynamical downscaling of Typhoon Lionrock (2016) for assessing the resulting hazards under global warming. Journal of the Meteorological Society of Japan, Vol. 97, pp. 69-88, doi:10.2151/jmsj.2019-003.
  37. 102. Takemi, T., T. Yoshida, S. Yamasaki, K. Hase, 2019: Quantitative estimation of strong winds in an urban district during Typhoon Jebi (2018) by merging mesoscale meteorological and large-eddy simulations. SOLA, Vol. 15, pp. 22-27, doi:10.2151/sola.2019-005.
  38. 101. 加瀨紘煕,筆保弘徳,北本朝展,Danlan Chen,吉田龍二,竹見哲也,2019: 深層学習を用いた台風強度推定に対する台風の特徴の影響.天気,Vol. 66, pp. 11-18.
  39. 100. Morimoto, J., K. Nakagawa, K. T. Takano, M. Aiba, M. Oguro, Y. Furukawa, Y. Mishima, K. Ogawa, R. Ito, T. Takemi, F. Nakamura, and C. J. Peterson, 2019: Comparison of vulnerability to catastrophic wind of Abies plantation forests and natural mixed forests in northern Japan. Forestry: An International Journal of Forest Research, doi:10.1093/forestry/cpy045
  40. 99. Nakayama, H., T. Takemi, 2018: Large-eddy simulation studies for predicting plume concentrations around nuclear facilities using an overlapping technique. International Journal of Environment and Pollution, Vol. 64, Nos. 1/3, pp. 125-144, doi:10.1504/IJEP.2018.099153.
  41. 98. Yoshida, T., T. Takemi, 2018: Properties of mixing length and dispersive stress in airflows over urban-like roughness obstacles with variable height. SOLA, Vol. 14, pp. 174-178, doi:10.2151/sola.2018-031.
  42. 97. Takemi, T., 2018: Importance of terrain representation in simulating a stationary convective system for the July 2017 Northern Kyushu Heavy Rainfall case. SOLA, Vol. 14, pp. 153-158, doi:10.2151/sola.2018-027.
  43. 96. Takemi, T., 2018: The evolution and intensification of Cyclone Pam (2015) and resulting strong winds over the southern Pacific islands. Journal of Wind Engineering & Industrial Aerodynamics, Vol. 182, pp. 27-36, doi:10.1016/j.jweia.2018.09.007.
  44. 95. Dong, H., S. Cao, T. Takemi, Y. Ge, 2018: WRF simulation of surface wind in high latitudes. Journal of Wind Engineering & Industrial Aerodynamics, Vol. 179, pp. 287-296, doi:10.1016/j.jweia.2018.06.009.
  45. 94. Yanase, T., T. Takemi, 2018: Diurnal variation of simulated cumulus convection in radiative-convective equilibrium. SOLA, Vol. 14, pp. 116-120, doi:10.2151/sola.2018-020.
  46. 93. Yoshida, T., T. Takemi, M. Horiguchi, 2018: Large-eddy-simulation study on the effects of building height variability on turbulent flows over an actual urban area. Boundary-Layer Meteorology, Vol. 168, pp. 127-153, doi:10.1007/s10546-018-0344-8.
  47. 92. Poulidis, A.-P., T. Takemi, A. Shimizu, M. Iguchi, S. F. Jenkins, 2018: Statistical analysis of dispersal and deposition patterns of volcanic emissions from Mount Sakurajima, Japan. Atmospheric Environment, Vol. 179, pp. 305-320, doi:10.1016/j.atmosenv.2018.02.021.
  48. 91. 山崎聖太,筆保弘徳,加藤雅也,竹見哲也,清原康友,2017:台風による強風ハザードの評価:台風ノモグラムの開発.日本風工学会論文集,Vol. 42, pp. 121-133, doi:10.5359/jwe.42.121.
  49. 90. Poulidis, A.-P., T. Takemi, M. Iguchi, and I. A. Renfrew, 2017: Orographic effects on the transport and deposition of volcanic ash: A case study of Mt. Sakurajima, Japan. Journal of Geophysical Research: Atmosphere, Vol. 122, pp. 9332-9350, doi:10.1002/2017JD026595.
  50. 89. Kanada, S., T. Takemi, M. Kato, S. Yamasaki, H. Fudeyasu, K. Tsuboki, O. Arakawa, I. Takayabu, 2017: A multi-model intercomparison of an intense typhoon in future, warmer climates by four 5-km-mesh models. Journal of Climate, Vol. 30, pp. 6017-6036, doi:10.1175/JCLI-D-16-0715.1.
  51. 88. Okada, Y., T. Takemi, H. Ishikawa, S. Kusunoki, and R. Mizuta, 2017: Future changes in atmospheric conditions for the seasonal evolution of the Baiu as revealed from projected AGCM experiments. Journal of the Meteorological Society of Japan, Vol. 95, pp. 239-260, doi:10.2151/jmsj.2017-013.
  52. 87. Shimura, T., N. Mori, T. Takemi, R. Mizuta, 2017: Long term impacts of ocean wave-dependent roughness on global climate systems. Journal of Geophysical Research: Oceans, Vol. 122, pp. 1995-2011, doi:10.1002/2016JC012621.
  53. 86. Mizuta, R., A. Murata, M. Ishii, H. Shiogama, K. Hibino, N. Mori, O. Arakawa, Y. Imada, K. Yoshida, T. Aoyagi, H. Kawase, M. Mori, Y. Okada, T. Shimura, T. Nagatomo, M. Ikeda, H. Endo, M. Nosaka, M. Arai, C. Takahashi, K. Tanaka, T. Takemi, Y. Tachikawa, K. Temur, Y. Kamae, M. Watanabe, H. Sasaki, A. Kitoh, I. Takayabu, E. Nakakita, M. Kimoto, 2017: Over 5,000 years of ensemble future climate simulations by 60 km global and 20 km regional atmospheric models. Bulletin of the American Meteorological Society, Vol. 98, pp. 1383-1398, doi:10.1175/BAMS-D-16-0099.1.
  54. 85. Poulidis, A.-P., T. Takemi, 2017: A 1998-2013 climatology of Kyushu, Japan: Seasonal variation of stability and rainfall. International Journal of Climatology, Vol. 37, pp. 1843-1858, doi:10.1002/joc.4817.
  55. 84. 橋本佳貴,安永数明,竹見哲也,2016:モデル解像度の違いによる富山県の熱的局地循環の表現性.風工学シンポジウム論文集,Vol. 24, pp. 7-12, doi:10.14887/kazekosymp.24.0_7
  56. 83. Takano, K. T., K. Nakagawa, M. Aiba, M. Oguro, J. Morimoto, Y. Furukawa, Y. Mishima, K. Ogawa, R. Ito, and T. Takemi, 2016: Projection of impacts of climate change on windthrows and evaluation of potential silvicultural adaptation measures: A case study from empirical modelling of windthrows in Hokkaido, Japan, by Typhoon Songda (2004). Hydrological Research Letters, Vol. 10, pp. 138-144. doi:10.3178/hrl.10.138.
  57. 82. Takemi, T., Y. Okada, R. Ito, H. Ishikawa, E. Nakakita, 2016: Assessing the impacts of global warming on meteorological hazards and risks in Japan: Philosophy and achievements of the SOUSEI program. Hydrological Research Letters, Vol. 10, pp. 119-125, doi:10.3178/hrl.10.119.
  58. 81. Takemi, T., R. Ito, O. Arakawa, 2016: Robustness and uncertainty of projected changes in the impacts of Typhoon Vera (1959) under global warming. Hydrological Research Letters, Vol. 10, pp. 88-94, doi:10.3178/hrl.10.88.
  59. 80. Takemi, T., R. Ito, O. Arakawa, 2016: Effects of global warming on the impacts of Typhoon Mireille (1991) in the Kyushu and Tohoku regions. Hydrological Research Letters, Vol. 10, pp. 81-87, doi:10.3178/hrl.10.81.
  60. 79. 志村智也,森信人,竹見哲也,水田 亮,2016:全球大気気候-波浪結合モデルによる海面粗度を通した波浪の気候への影響評価.土木学会論文集B2(海岸工学),Vol. 72, No. 2, pp. I_1507-I_1512. doi:10.2208/kaigan.72.I_1507.
  61. 78. 二宮順一,森信人,竹見哲也,荒川理,2016:伊勢湾台風の擬似温暖化実験による将来高潮の予測.土木学会論文集B2(海岸工学),Vol. 72, No. 2, pp. I_1501-I_1506. doi:10.2208/kaigan.72.I_1501.
  62. 77. Spiga, A., E. Barth, Z. Gu, F. Hoffmann, J. Ito, B. Jemmett-Smith, M. Klose, S. Nishizawa, S. Raasch, S. Rafkin, T. Takemi, D. Tyker, W. Wei, 2016: Large-eddy simulations of dust devils and convective vortices. Space Science Reviews, Vol. 203, pp. 245-275, doi:10.1007/s11214-016-0284-x.
  63. 76. Kurgansky, M. V., R. D. Lorenz, N. O. Renno, T. Takemi, Z. Gu, W. Wei, 2016: Dust devil steady-state structure from a fluid dynamics perspective. Space Science Reviews, Vol. 203, pp. 209-244, doi:10.1007/s11214-016-0281-0.
  64. 75. Rafkin, S., B. Jemmett-Smith, L. Fenton, R. Lorenz, T. Takemi, J. Ito, D. Tyler, 2016: Dust devil formation. Space Science Reviews, Vol. 203, pp. 183-207, doi:10.1007/s11214-016-0307-7.
  65. 74. Lorenz, R. D., M. R. Balme, Z. Gu, H. Kahanpaa, M. Klose, M. V. Kurgansky, M. R. Patel, D. Reiss, A. P. Rossi, A. Spiga, T. Takemi, W. Wei, 2016: History and applications of dust devil studies. Space Science Reviews, Vol. 203, pp. 5-37, doi:10.1007/s11214-016-0239-2.
  66. 73. 林悠平,竹見哲也,宮本佳明,2016:非静力学軸対称モデルによる竜巻様渦の遷移に関する数値実験.日本風工学会論文集,Vol. 41, No. 4, pp.125-135, doi:10.5359/jwe.41.125
  67. 72. 宮脇航平,立川康人,田中智大,石井大貴,市川温,萬和明,竹見哲也,2016:最大クラス台風を想定した淀川流域における洪水流出シミュレーション.土木学会論文集B1(水工学),Vol. 72, No. 4, pp. I_31-I_36, doi:10.2208/jscejhe.72.I_31.
  68. 71. Tsuboi, A., T. Takemi, and K. Yoneyama, 2016: Seasonal environmental characteristics for the tropical cyclone genesis in the Indian Ocean during the CINDY2011/DYNAMO field experiment. Atmosphere, Vol. 7, 66. doi:10.3390/atmos7050066.
  69. 70. Unuma, T., and T. Takemi, 2016: A role of environmental shear on the organization mode of quasi-stationary convective clusters during the warm season in Japan. SOLA, Vol. 12, pp. 111-115, doi:10.2151/sola.2016-025.
  70. 69. Ito, R., T. Takemi, and O. Arakawa, 2016: A possible reduction in the severity of typhoon wind in the northern part of Japan under global warming: A case study. SOLA, Vol. 12, pp. 100-105, doi:10.2151/sola.2016-023.
  71. 68. Unuma, T., and T. Takemi, 2016: Characteristics and environmental conditions of quasi-stationary convective clusters during the warm season in Japan. Quarterly Journal of the Royal Meteorological Society, Vol. 142, pp. 1232-1249. doi:10.1002/qj.2726.
  72. 67. Vanderbauwhede, W., and T. Takemi, 2016: An analysis of the feasibility and benefits of GPU/multicore acceleration of the Weather Research and Forecasting model. Concurrency and Computation: Practice and Experience, Vol. 28, pp. 2052-2072. doi:10.1002/cpe.3522.
  73. 66. Nakayama, H., T. Takemi, H. Nagai, 2016: Development of local-scale high-resolution atmospheric dispersion model using large-eddy simulation. Part 5: Detailed simulation of turbulent flows and plume dispersion in an actual urban area under real meteorological conditions. Journal of Nuclear Science and Technology, Vol. 53, pp. 887-908, doi:10.1080/00223131.2015.1078262.
  74. 65. Mori, N., and T. Takemi, 2016: Impact assessment of coastal hazards due to future changes of tropical cyclones in the North Pacific Ocean. Weather and Climate Extremes, Vol. 11, pp. 53-69, doi:10.1016/j.wace.2015.09.002.
  75. 64. Nakayama, H., T. Takemi, H. Nagai, 2015: The numerical analysis of the capping inversion effect in a convective boundary layer flow on the contaminant gas dispersion. Procedia Earth and Planetary Science, Vol. 15, pp. 560-565, doi:10.1016/j.proeps.2015.08.101
  76. 63. Vanderbauwhede, W., and T. Takemi, 2015: Twinned buffering: A simple and highly effective scheme for parallelization of Successive Over-Relaxation on GPUs and other accelerators. High Performance Computing and Simulation (HPCS), 2015 International Conference on, pp. 436-443, 20-24 July 2015, doi: 10.1109/HPCSim.2015.7237073
  77. 62. 松本幸大,折池雄太,鈴木久紀,竹見哲也,中北英一,2015:台風時の降雨量推定手法に関する研究.河川技術論文集,Vol. 21, pp.419-424.
  78. 61. Takemi, T., 2015: Relationship between cumulus activity and environmental moisture during the CINDY2011/DYNAMO field experiment as revealed from convection-resolving simulations. Journal of the Meteorological Society of Japan, Vol. 93A, pp. 41-58, doi:10.2151/jmsj.2015-035.
  79. 60. 二宮順一,竹見哲也,森信人,2015:伊勢湾台風を対象とした高潮追算のためのJRA55再解析データの力学的ダウンスケール.土木学会論文集B2(海岸工学),Vol. 71, No. 2, pp. I_1699-I_1704. doi: 10.2208/kaigan.71.I_1699.
  80. 59. Miyamoto, Y., and T. Takemi, 2015: A triggering mechanism for rapid intensification of tropical cyclones. Journal of the Atmospheric Sciences, Vol. 72, pp. 2666–2681, doi: 10.1175/JAS-D-14-0193.1
  81. 58. Nakayama, H., T. Takemi, H. Nagai, 2015: Large-eddy simulation of turbulent winds during the Fukushima Daiichi Nuclear Power Plant accident by coupling with a meso-scale meteorological simulation model. Advances in Science and Research, Vol. 12, pp. 127-133, doi: 10.5194/asr-12-127-2015.
  82. 57. Takayabu, I., K. Hibino, H. Sasaki, H. Shiogama, N. Mori, Y. Shibutani, T. Takemi, 2015: Climate change effects on the worst-case storm surge: a case study of Typhoon Haiyan. Environmental Research Letters, Vol. 10, 064011, doi:10.1088/1748-9326/10/6/064011
  83. 56. 竹見哲也,草川敬之,2014:濃尾平野における夏期局地降水発生前の地上風系の特徴.風工学シンポジウム論文集,Vol. 23, pp. 91-96, doi: 10.14887/kazekosymp.23.0_91
  84. 55. 森 信人, 澁谷容子, 竹見哲也, 金 洙列, 安田誠宏, 丹羽竜也, 辻尾大樹, 間瀬 肇, 2014:2013年台風30号Haiyanによる高潮の予測可能性と再解析精度.土木学会論文集B2(海岸工学),Vol. 70, No. 2, p. I_246-I_250, doi: 10.2208/kaigan.70.I_246
  85. 54. Ito, R., T. Satomura, and T. Takemi, 2014: Comparison of temperature increases with urban surface cover for different geographical conditions in Japan. Geographical Review of Japan Series B, Vol. 87, pp. 65-73, doi: 10.4157/geogrevjapanb.87.65
  86. 53. Takemi, T., 2014: Characteristics of summertime afternoon rainfall and its environmental conditions in and around the Nobi Plain. SOLA, Vol. 10, pp. 158-162, doi:10.2151/sola.2014-033
  87. 52. Nakayama, H., T. Takemi, and H. Nagai, 2014: Large-eddy simulation of plume dispersion under various thermally stratified boundary layers. Advances in Science and Research, Vol. 11, pp. 75-81, doi:10.5194/asr-11-75-2014
  88. 51. Mori, N., M. Kato, S. Kim, H. Mase, Y. Shibutani, T. Takemi, K. Tsuboki, T. Yasuda, 2014: Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf. Geophysical Research Letters, Vol. 41, pp. 5106-5113, doi:10.1002/2014GL060689.
  89. 50. Oku, Y., J. Yoshino, T. Takemi, and H. Ishikawa, 2014: Assessment of heavy rainfall-induced disaster potential based on an ensemble simulation of Typhoon Talas (2011) with controlled track and intensity. Natural Hazards and Earth System Sciences, Vol. 14, pp. 2699-2709, doi:10.5194/nhess-14-2699-2014.
  90. 49. Tsuboi, A., and T. Takemi, 2014: The interannual relationship between MJO activity and tropical cyclone genesis in the Indian Ocean. Geoscience Letters, Vol. 1: 9, doi: 10.1186/2196-4092-1-9.
  91. 48. Takemi, T., 2014: Convection and precipitation under various stability and shear conditions: Squall lines in tropical versus midlatitude environment. Atmospheric Research, Vol. 142, pp. 111-123, doi:10.1016/j.atmosres.2013.07.010.
  92. 47. Vanderbauwhede, W., and T. Takemi, 2013: An investigation into the feasibility and benefits of GPU/multicore acceleration of the weather research and forecasting model. High Performance Computing and Simulation (HPCS), 2013 International Conference on, pp. 482-489, 1-5 July 2013, doi: 10.1109/HPCSim.2013.6641457
  93. 46. Ishikawa, H., Y. Oku, S. Kim, T. Takemi, and J. Yoshino, 2013: Estimation of a possible maximum flood event in the Tone River basin, Japan caused by a tropical cyclone. Hydrological Processes, Vol. 27, pp. 3292-3300, doi: 10.1002/hyp.9830.
  94. 45. Takemi, T., 2013: High-resolution meteorological simulations of local-scale wind fields over complex terrain: A case study for the eastern area of Fukushima in March 2011. Theoretical and Applied Mechanics Japan, Vol. 61, pp. 3-10, doi: 10.11345/nctam.61.3
  95. 44. Miyamoto, Y., and T. Takemi, 2013: A transition mechanism for the spontaneous axisymmetric intensification of tropical cyclones. Journal of the Atmospheric Sciences, Vol. 70, pp. 112-129, doi: 10.1175/JAS-D-11-0285.1.
  96. 43. Arnold, D., D. Morton, L. Schicker, P. Seibert, M. W. Rotach, K. Horvath, J. Dudhia, T. Satomura, M. Müller, G. Zängl, T. Takemi, S. Serafin, J. Schmidli, S. Schneider, 2012: Issues in high-resolution atmospheric modeling in complex topography - The HiRCoT workshop, Croatian Meteorological Journal (Hrv. metor. časopis), Vol. 47, pp. 3-11.
  97. 42. Takemi, T., 2012: Importance of the numerical representation of shallow and deep convection for simulations of dust transport over a desert region. Advances in Meteorology, Vol. 2012, Article ID 413584, 13 pages, doi:10.1155/2012/413584.
  98. 41. Nakayama, H., T. Takemi, and H. Nagai, 2012: Large-eddy simulation of urban boundary-layer flows by generating turbulent inflows from mesoscale meteorological simulations. Atmospheric Science Letters, Vol. 13, pp. 180-186, doi: 10.1002/asl.377.
  99. 40. Takemi, T., 2012: Projected regional-scale changes in atmospheric stability condition for the development of summertime convective precipitation in the Tokyo metropolitan area under global warming. Hydrological Research Letters, Vol. 6, pp. 17-22, doi: 10.3178/HRL.6.17.
  100. 39. Takemi, T., S. Nomura, Y. Oku, and H. Ishikawa, 2012: A regional-scale evaluation of changes in environmental stability for summertime afternoon precipitation under global warming from super-high-resolution GCM simulations: A study for the case in the Kanto Plain. Journal of the Meteorological Society of Japan, Vol. 90A, pp. 189-212, doi: 10.2151/jmsj.2012-A10.
  101. 38. Nakayama, H., T. Takemi, and H. Nagai, 2011: LES analysis of the aerodynamic surface properties for turbulent flows over building arrays with various geometries. Journal of Applied Meteorology and Climatology, Vol. 50, pp. 1692-1712, doi: 10.1175/2011JAMC2567.1.
  102. 37. Inoue, H. Y., K. Kusunoki, W. Kato, H. Suzuki, T. Imai, T. Takemi, K. Bessho, M. Nakazato, S. Hoshino, W. Mashiko, S. Hayashi, T. Fukuhara, T. Shibata, H. Yamauchi, O. Suzuki, 2011: Fine-scale Doppler radar observation of a tornado and low-level misocyclones within a winter storm in the Japan Sea coastal region. Monthly Weather Review, Vol. 139, pp. 351-369, doi: 10.1175/2010MWR3247.1.
  103. 36. Miyamoto, Y., and T. Takemi, 2011: Effects of surface exchange coefficients for high wind speeds on intensity and structure of tropical cyclones: Numerical simulations for Typhoon Ioke (2006). Theoretical and Applied Mechanics Japan, Vol. 59, pp. 275-283, doi: 10.11345/nctam.59.275
  104. 35. Nomura, S., and T. Takemi, 2011: Environmental stability for afternoon rain events in the Kanto plain in summer. SOLA, Vol. 7, pp. 9-12, doi:10.2151/sola.2011-003.
  105. 34. 竹見哲也,辰己賢一,石川裕彦,2010:高分解能領域気象モデルによる気象擾乱に伴う風速の極値の解析.風工学シンポジウム論文集,Vol. 21,pp. 19-24.
  106. 33. 内田孝紀,丸山 敬,竹見哲也,奥 勇一郎,大屋裕二,李 貫行,2010:気象モデルと流体工学モデルを用いた風車設置地点における設計風速評価手法の提案.風力エネルギー協会誌,Vol.34, No. 2,通巻94, pp. 118-124.
  107. 32. Miyamoto, Y., and T. Takemi, 2010: An effective radius of the sea surface enthalpy flux for the maintenance of a tropical cyclone. Atmospheric Science Letter, Vol. 11, pp. 278-282, doi: 10.1002/asl.292.
  108. 31. Ohno, H., and T. Takemi, 2010b: Numerical study for the effects of mean wind on the intensity and evolution of dust devils. SOLA, Vol. 6A, pp. 5-8, doi:10.2151/sola.6A-002.
  109. 30. Oku, Y., T. Takemi, H. Ishikawa, S. Kanada, and M. Nakano, 2010: Representation of extreme weather during a typhoon landfall in regional meteorological simulations: A model intercomparison study for Typhoon Songda (2004). Hydrological Research Letters, Vol. 4, pp. 1-5, doi: 10.3178/hrl.4.1.
  110. 29. Takemi, T., K. Kusunoki, K. Araki, T. Imai, K. Bessho, S. Hoshino, and S. Hayashi, 2010: Representation and localization of gusty winds induced by misocyclones with a high-resolution meteorological modeling. Theoretical and Applied Mechanics Japan, Vol. 58, pp. 121-130, doi: 10.11345/nctam.58.121
  111. 28. Ohno, H., and T. Takemi, 2010a: Mechanisms for intensification and maintenance of numerically simulated dust devils. Atmospheric Science Letter, Vol. 11, pp. 27-32, doi: 10.1002/asl.249.
  112. 27. Takemi, T., 2010: Dependence of the precipitation intensity in mesoscale convective systems to temperature lapse rate. Atmospheric Research, Vol. 96, pp. 273-285, doi:10.1016/j.atmosres.2009.09.002.
  113. 26. Takemi, T., 2009: High-resolution numerical simulations of surface wind variability by resolving small-scale terrain features. Theoretical and Applied Mechanics Japan, Vol. 57, pp. 421-428, doi: 10.11345/nctam.57.421.
  114. 25. 内田孝紀,丸山敬,竹見哲也,大屋裕二,道下和明,2008:複雑地形上の風車ハブ高さ風速に与える流入気流性状と標高データの影響.風工学シンポジウム論文集,Vol. 20,pp. 139-144.
  115. 24. 竹見哲也,猪上華子,楠研一,加藤亘,鈴木博人,今井俊昭,別所康太郎,中里真久,星野俊介,益子渉,林修吾,福原隆彰,柴田徹,2008:メソ気象擾乱に伴う地上近傍の強風変動に関する高解像度気象モデル解析.風工学シンポジウム論文集,Vol. 20,pp. 25-30.
  116. 23. Takemi, T., 2008: An eddy-resolving simulation of the diurnal variation of fair-weather convection and tracer transport. Atmospheric Research, Vol. 89, pp. 270-282, doi:10.1016/j.atmosres.2008.02.012.
  117. 22. Takemi, T., 2007: Environmental stability control of the intensity of squall lines under low-level shear conditions. Journal of Geophysical Research, Vol. 112, D24110, doi:10.1029/2007JD008793.
  118. 21. Takemi, T., 2007: A sensitivity of squall line intensity to environmental static stability under various shear and moisture conditions. Atmospheric Research, Vol. 84, pp. 374-389, doi: 10.1016/j.atmosres.2006.10.001
  119. 20. Takemi, T., 2006: Impacts of moisture profile on the evolution and organization of midlatitude squall lines under various shear conditions. Atmospheric Research, Vol. 82, pp. 37-54.
  120. 19. Takemi, T., M. Yasui, J. Zhou, and L. Liu, 2006: Role of boundary layer and cumulus convection on dust emission and transport over a midlatitude desert area. Journal of Geophysical Research, Vol. 111, D11203, doi:10.1029/2005JD006666.
  121. 18. Mikami, M., G.-Y. Shi, I. Uno, S. Yabuki, Y. Iwasaka, M. Yasui, T. Aoki, T.Y. Tanaka, Y. Kurosaki, K. Masuda, A. Uchiyama, A. Matsuki, T. Sakai, T. Takemi, M. Nakawo, N. Seino, M. Ishizuka, S. Satake, K. Fujita, Y. Hara, K. Kai, S. Kanayama, M. Hayashi, M. Du, Y. Kanai, Y. Yamada, X. Y. Zhang, Z. Shen, H. Zhou, O. Abe, T. Nagai, Y. Tsutsumi, M. Chiba, and J. Suzuki, 2006: Aeolian Dust Experiment on Climate Impact: An overview of Japan-China Joint Project ADEC. Global and Planetary Change, Vol. 52, pp. 142-172.
  122. 17. Takemi, T., M. Yasui, J. Zhou, and L. Liu, 2005: Modeling study of diurnally varying convective boundary layer and dust transport over desert regions. SOLA, Vol. 1, pp. 157-160, doi: 10.2151/sola.2005-041.
  123. 16. Takemi, T., and N. Seino, 2005: Duststorms and mesoscale cloud systems over the east Asian deserts in spring. Water, Air, & Soil Pollution:Focus, Vol. 5, pp. 159-174.
  124. 15. Takemi, T., 2005: Explicit simulations of convective-scale transport of mineral dust in severe convective weather. Journal of the Meteorological Society of Japan, Vol. 83A, pp. 187-203.
  125. 14. 竹見哲也,有光剛,玉井昌宏,2005: 大阪都市圏における風系の解析. 電力土木. No. 316, pp. 18-24.
  126. 13. Takemi, T., and N. Seino, 2005: Duststorms and cyclone tracks over the arid regions in east Asia in spring. Journal of Geophysical Research, Vol. 110, D18S11, doi:10.1029/2004JD004698.
  127. 12. Takemi, T., and R. Rotunno, 2005: CORRIGENDUM. Monthly Weather Review, Vol. 133, pp. 339-341, doi: 10.1175/MWR-2847.1
  128. 11. Takemi, T., O. Hirayama, C. Liu, 2004: Factors responsible for the vertical development of tropical oceanic cumulus convection. Geophysical Research Letters, Vol. 31, L11109, doi:10.1029/2004GL020225.
  129. 10. 竹見哲也,柴山健一,2004: 衛星による赤外スプリットウィンドウ計測を用いた熱帯海域における可降水量の導出法. 海洋気象学会誌「海と空」. Vol. 79, pp.77-83.
  130. 9. Takemi, T., and R. Rotunno, 2003: The effects of subgrid model mixing and numerical filtering in simulations of mesoscale cloud systems. Monthly Weather Review, Vol. 131, pp. 2085-2101, doi: 10.1175/1520-0493(2003)131<2085:TEOSMM>2.0.CO;2.
  131. 8. Takahashi, S., M. Nabekura, O. Tsukamoto, T. Iwata, T. Takemi, and H. Ishida, 2000: Sea surface heat flux evaluation by on-board technique over tropical western Pacific. Umi To Sora, Vol. 76, pp. 21-26.
  132. 7. Takemi, T., 2000: Diurnal variability of the fair weather boundary layer over the western equatorial Pacific. Umi To Sora, Vol. 76, pp. 15-20.
  133. 6. 鈴木敏夫, 竹見哲也, 緒方輝久, 2000: 対流圏下層における水蒸気量分布の移動速度と海上風の相関に関する研究. 関西造船協会誌. Vol. 234, pp. 303-308.
  134. 5. Takemi, T., and T. Satomura, 2000: Numerical experiments on the mechanisms for the development and maintenance of long-lived squall lines in dry environments. Journal of the Atmospheric Sciences, Vol. 57, pp. 1718-1740.
  135. 4. Takemi, T., 1999: Structure and evolution of a severe squall line over the arid region in northwest China. Monthly Weather Review, Vol. 127, pp. 1301-1309.
  136. 3. Takemi, T., 1999: Evaporation of rain falling below a cloud base through a deep atmospheric boundary layer over an arid region. Journal of the Meteorological Society of Japan, Vol. 77, pp. 387-397.
  137. 2. 竹見哲也, 1997: 1993年5月5日の中国北西部に発生したダストストームとその発生環境. 沙漠研究, Vol. 7-2, pp. 87-96.
  138. 1. Mitsuta, Y., T. Hayashi, T. Takemi. Y. Hu, J. Wang, and M. Chen, 1995: Two severe local storms as observed in the arid area of northwest China. Journal of the Meteorological Society of Japan, Vol. 73, pp. 1269-1284.
PAGE TOP