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urricane Risks:

» Wind

2 Rain

» Storm Surge







The Global Hurricane Hazard
» About 10,000 deaths per year since 1971

» $700 Billion 2015 U.S. Dollars in Damages
Annually since 1971

» Global population exposed to hurricane
hazards has tripled since 1970

EM-DAT, 2016: The OFDA/CRED International Disaster Database
http://www.emdat.be/.



U. S. Hurricane Mortality (1970-1999)
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Windstorms Account for Bulk of
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EM-DAT, 2018: The OFDA/CRED International Disaster Database
http://www.emdat.be/. GDP correction from Federal Reserve Bank
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Historical Records

Pre-1943: Anecdotal accounts from coastal cities and ships

1943: Introduction of routine aircraft reconnaissance in
Atlantic, western North Pacific

1958: Inertial navigation permits direct measurement of
wind speed at flight level

1970: Complete global detection by satellites
1978: Introduction of satellite scatterometry

1987: Termination of airborne reconnaissance in western
North Pacific

2017: Introduction of CYGNSS scatterometry



Historical Records:
Prior to 1970, Many Storms Were Missed
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Major hurricanes in the North Atlantic, 1851-2016, smoothed using a 10-
year running average. Shown in blue are storms that either passed through
the chain of Lesser Antilles or made landfall in the continental U.S.; all other
major hurricanes are shown in red. The dashed lines show the best fit trend
lines for each data set.



Trends in Global TC Frequency Over Threshold Intensities, from
Historical TC Data, 1980-2016. Trends Shown Only When p < 0.05.
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Distance Northward from Equator (km)

Distance Southward from Equator (km)
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Time series of the latitudes
at which tropical cyclones
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From Kossin et al. (2014)



Tropical Cyclones are Slowing Down (Kossin, Nature, 2018)
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Paleotempestology
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Map of the western North Pacific showing study area (open red square).
The locations of Nagasaki, Kagoshima Bay, and Tanegashima are
identified by a, b, and c, respectively.

Woodruff et al., Quatern. Sci. Rev., 2009
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Tracklines are shown in Figure 1. Green shading identifies top sedimentary unit
described in text (Unit 1), and yellow shading identifies lower unit (Unit 2).
Truncated stratigraphy and cut/fill features at the contact between the two units
are suggestive of an erosional incision. Vertical lines indicate locations and
approximate depths for cores NKI5 and KI2.

Woodruff et al., Quatern. Sci. Rev., 2009
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Trends in Thermodynamic Potential for Hurricanes, 1980-2010
(NCAR/NCEP Reanalysis)
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Projected Trend Over 21st Century: GFDL model
under RCP 8.5
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Inferences from Basic Theory:

o Potential intensity increases with global

warming

@ Incidence of high-intensity hurricanes should

Increase

9 Increases in potential intensity should be

faster in su

@ Hurricanes wil

rain: Clausius-C

0-1ro

proc

DICS

uce substantially more

apeyron yields ~7%

Increase in water vapor per 1°C warming



Risk Assessment in a Changing Climate:
The Problem
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The Heart of the Problem:

o Societies are usually well adapted to frequent
events (> 1/100 yr)

@ Societies are often poorly adapted to rare
events (< 1/100 yr)

o Robust estimates of the character of ~100 yr
events require ~1,000 years of data

@ We do not have ~1,000 years of
meteorological observations



How We Deal with This:

o For local events, accumulate statistics over
locations far enough apart to sample different
individual events, but close enough to sample
the same overall climatology.

o Example: 500 mm of TC rain in metro Houston
may be a 100-year event, but a 20-year event over
coastal Texas

o Extrapolate well-sampled events to rare
events using extreme value theory. Dicey!



How We COULD Deal with This:

@ Bring physics to bear on natural hazard risk

assessment... problem too important to leave
to statisticians

o But several impediments:

o Academic stove-piping: Too applied for scientists; too
complicated for risk professionals

o Brute force modeling probably too expensive to be
practical for many applications

o May now be impractical to run WRF for ~1,000 years,
driven by GCMs, but that day is coming



Using Physics to Estimate
Hurricane Risk



Not Use Global Climate Models to
Simulate Hurricanes?




Problem: Today’s models are far too coarse to simulate
destructive hurricanes

East Pacific

Category 3

e

20 30 40 &0

Wind Speed (meters per second)

Modeled /

Observed

Histograms of Tropical
Cyclone Intensity as
Simulated by a Global
Model with 30 mile grid
point spacing. (Courtesy
Isaac Held, GFDL)

Global models do not

simulate the storms that

cause destruction



How to deal with this?

» Embed high-resolution, fast coupled
ocean-atmosphere hurricane model in
global climate model or climate
reanalysis data

» Coupled Hurricane Intensity prediction
Model (CHIPS) has been used for 16
years to forecast real hurricanes in
near-real time



Time-dependent, axisymmetric model
phrased in R space (CHIPS)

1 1 :
M=rV+—fr* —fR°=M f =2Qsind
2 2
Hydrostatic and gradient balance above PBL

Moist adiabatic lapse rates on M surfaces above
PBL

Boundary layer quasi-equilibrium convection
Deformation-based radial diffusion
Coupled to simple 1-D ocean model

Environmental wind shear effects parameterized
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RMS Intensity Error, 2009-2015

North Atlantic
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Maximum Wind (knots)

Radii (km)
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Real-time forecasts at http://wind.mit.edu/~emanuel/storm.htm]|
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RMS Intensity Error, 2009-2015

North Atlantic
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How Can We Use This Model to
Help Assess Hurricane Risk in
Current and Future Climates?



Risk Assessment Approach:

Step 1: Seed each ocean basin with a very large number
of weak, randomly located cyclones

Step 2: Cyclones are assumed to move with the large
scale atmospheric flow in which they are embedded, plus
a correction for the earth’s rotation and sphericity

Step 3: Run the CHIPS model for each cyclone, and note
how many achieve at least tropical storm strength

Step 4: Using the small fraction of surviving events,
determine storm statistics. Can easily generate 100,000
events

Details: Emanuel et al., Bull. Amer. Meteor. Soc, 2008



Synthetic Track Generation:
Generation of Synthetic Wind Time Series

» Postulate that TCs move with vertically
averaged environmental flow plus a “beta
drift” correction

» Approximate “vertically averaged” by
weighted mean of 850 and 250 hPa flow



Synthetic wind time series

» Monthly mean, variances and co-
variances from re-analysis or global
climate model data

» Synthetic time series constrained to have
the correct monthly mean, variance, co-
variances and an w3 power series



Calibration

» Absolute genesis frequency calibrated
to globe during the period 1980-2005
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Comparison of Random Seeding Genesis Locations
with Observations
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Top 100 out of 2000 TCs Affecting Kyoto, 1981-2000

Kyoto_WP_ipsi5_20thcal




Same, but with top 20 historical tracks

Kyoto_WP_ipsl5_20thcal




Sample Kyoto track
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Kyoto_WP_ipsi5_20th track number 271
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Storm total rainfall
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Kyoto_WP_ipsl5_20th, Track Number 271
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Return Period (years)

(Showing scatter among 4 reanalysis products)
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Return Period (years)

(Showing scatter among 4 reanalysis products)
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Cumulative Distribution of Storm Lifetime Peak Wind
Speed, with Sample of 1755 Synthetic Tracks
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® 394 best tracks, 1980 to 2012
— 3842 synthetic tracks
90% of BT-size subsamples




Captures effects of regional climate phenomena
(e.g. ENSO, AMM)
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Captures Much of the Observed North Atlantic Interannual Variability

Storm Maximum Power Dissipation
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North Atlantic Major Hurricanes Downscaled from NOAA 20" Century
Reanalysis
(Forced by sea surface temperature, surface pressure, and sea ice only)
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North Atlantic Major Hurricanes Downscaled from NOAA 20" Century
Reanalysis
(Forced by sea surface temperature, surface pressure, and sea ice only)
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Storm Surge Simulation (Ning Lin)
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Predicting Rainfall

The CHIPS models predicts updraft
and downdraft convective mass flux

as a function of time and potential
radius, BUT:

Storing these variables at all radi
would increase overall storage
requirements by a factor of ~50

(We are dealing with 10,000-
100,000 individual events)



Rainfall calculated using quasi-
balanced dynamics

Basic strategy: Reconstruct time-evolving
2-D wind field by fitting a canonical radial
wind profile to predicted values of V.., and
r..x and adding a constant background wind.
Allow resulting vortex to interact with
background wind and thermodynamic fields.



QB is fine, but how do we evaluate
how well it works?

o Evaluation of rainfall predictions against
observations is tough!

@ Only 32 years of NEXRAD data

@ Rain gauges go back much further in time but can
be unreliable in strong winds and are subject to
large sampling error

@ We used both radar and gauge data and
averaged both over circles of 100 km radius of
35 radar sites. (Feldmann and Emanuel, 2019, in review)

@ Many thanks to Monika Feldmann
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Some Examples
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Storm total rainfall (mm)
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Storm total rainfall (mm)
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Effects of Climate Change

» More moisture in boundary layer

» Stronger storms but more compact inner
regions

» Possibly larger storm diameters

» Storms may be moving faster or slower



e
-



Global Hurricane Power under RCP 8.5
Six CMIP5 Models
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Hackensack River
Hackensack River discharge
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Raritan River
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Strategies for protection vs. reducing vulnerability. (Left) Strategy S2c
reduces the length of the coastline of the NYC-N] area as much as possible, to
minimize flood protection costs. Two storm-surge barriers are developed: one
large barrier that connects Sandy Hook in NJ and the tip of the Rockaways in
Queens, NY, and a barrier in the East River. Some lower spots (bulkheads, levees,
or landfill) on the inside of the protection system will be elevated to accommo-

Hudson

\ ischarge
i -

Hudson Ri ‘. \.! nd Sound
Hackensack River y

Hackensack River discharge ¢ ' .
East River

Essex .
o Queens

—Upper NY Bay

Brooklyn

naica Bay
"
\A_/

Raritan River

Raritan River

Monmouth

" Enhanced building codes

[ (= = =ess [0
@ Protection critical infrastructure 03 6 12 18 24

Moderate enhancement protection
Levees and/or nourishment

O liles
) 8 12 16

date rising water levels caused by Hudson River peak discharges during a storm
event. (Right) Strategy S3 combines cost-effective flood-proofing measures with
local protection measures of critical infrastructure. Such a “hybrid solution” aims
at keeping options open: either (a) building codes can be enhanced in the future
with additional local protection measures or (b) storm-surge barriers can be
developed. See SM for details.

Aerts, C. J. H. J., W. J. W. Botzen, K. Emanuel, N. Lin, H. de Moel, and E. O. Michel-Kerjan,
2014: Evaluating flood resilience strategies for coastal megacities. Science, 344, 473-475.




Benefit-Cost Ratios 1 1

Costs
Total investment NYC $16.9-21.1 billion $15.9-21.8 billion $11.0-14.7 billion $6.4-7.6 billion
Total investment N] $2 billion $2 billion n/a $4 billion
Total investment NYC+N]  $18.9-23.1 billion $17.9-23.8 billion $11.0-14.7 billion $10.4-11.6 billion
Maintenance NYC+N] $98.5 million $126 million $117.5 million $13.5 million

BCR for current climate

BCR 4% discount 0.21(0.11; 0.35) 0.21(0.11;0.34) 0.36(0.18: 0.59)  0.45 (0.23; 0.73)
7% discount 0.13(0.07; 0.21) 0.12(0.07; 0.20) 0.23(0.12; 0.37) 0.26 (0.13; 0.43)

BCR for middle climate change scenario

BCR 4% discount 1.32(0.67; 2.16)  1.29 (0.65; 2.11)  2.24 (1.14; 3.67)  2.45 (1.24; 4.00)
7% discount  0.60 (0.30; 0.98)  0.60(0.30; 0.97) 1.06 (0.54; 1.74)  1.09 (0.55; 1.78)

Costs and main BCA results of flood management strategies.(Top) Total costs. Environ. dyn., environ-
mental dynamics; inv., total investment as billions of U.S. dollars; maintenance, maintenance costs as mil-
lions of U.S. dollars per year; n.a., not applicable. (Bottom) BCA results with modeling uncertainty as 95%
confidence intervals (in parentheses). If BCR > 1, then the measure is cost effective. For S3, BCA results are
shown for the scenario of high effectiveness of wet flood-proofing. See SM for details.



Tropical Cyclone Idai, 2019

» Second-deadliest tropical
cyclone recorded in the
South-West Indian Ocean
basin

» Third-deadliest tropical
cyclone on record in the
southern hemisphere

» Peak winds of 100 knots

» > 500 mm rainfall in some
locations

» Storm surge of 4.4 m at Beira
» ~90% of Beira destroyed

> >1,000 lives lost
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Rainfall accumulation from March 13 to March 20, 2019. Many areas received as
much as 50 centimeters (20 inches) of rain. These data are remotely-sensed
estimates that come from the Integrated Multi-Satellite Retrievals (IMERG), a
product of the Global Precipitation Measurement (GPM) mission. Local rainfall
amounts can be significantly higher when measured from the ground. Credit:

NASA
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Typhoon Jebi, 2018

TR : T

» Strongest typhoon to strike

Japan since Typhoon Yancy in
1993

» 90 kts sustained wind at
landfall

» Broke the historical records of
sustained winds at 53 weather
stations and maximum gust at
100 weather stations in Japan

» Storm surge of 3.3 m at Osaka
» 11 deaths, >600 injured
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A Black Swan Event

Taiwan_wp_hadgem5_rcp85
Track number 1432, year 2087
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Summary

o The observational record of hurricanes is too
short and noisy, and of a quality too low to
make robust inferences of climate signals

o Satellite data do show a migration of peak
intensity toward higher latitudes and some
indication of a greater fraction of intense
storms

o Recovery of hurricane proxies from the
geological record is beginning to show
some climate signals



Summary (continued)

o Potential intensity theory demonstrates that
the thermodynamic limit on hurricane
intensity rises with temperature

@ Observations show that this limit is indeed
Increasing

@ Physics can be used to model hurricane risk in
current and future climates



