Tropical Cyclone Structure

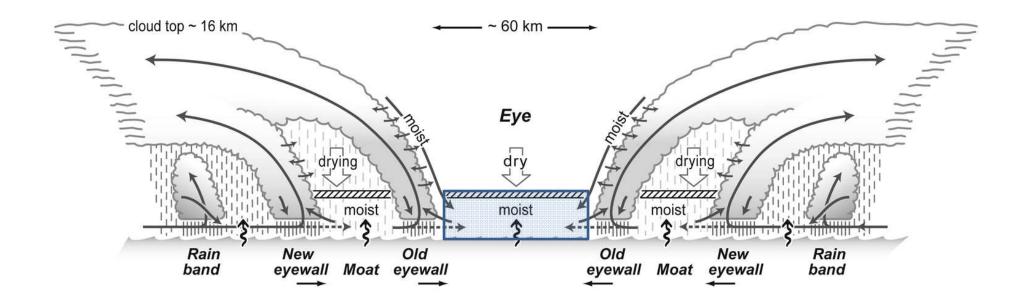
Three Regions

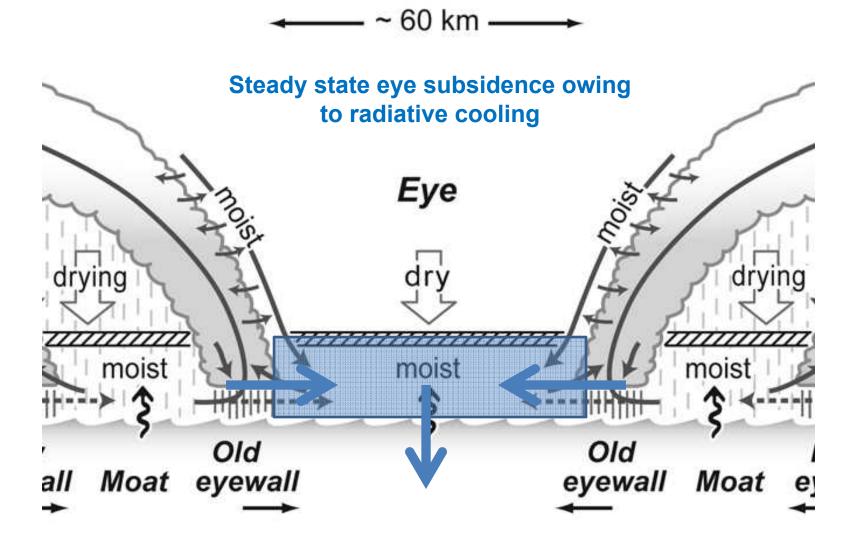
• Eye (w < 0)

• Inner Core (w > 0)

• Outer region (w < 0)

Angular Momentum Budget in Eye Boundary Layer





Blue arrows show turbulent angular momentum fluxes. In eye PBL, radial M flux from eyewall must balance oceanic M sink.

Eye Angular Momentum Budget

$$h\frac{\partial M}{\partial t} \approx 0 = -uh\frac{\partial M}{\partial r} - C_D r |\mathbf{V}| V + \frac{h}{r}\frac{\partial}{\partial r} \left(r^3 \upsilon \frac{\partial}{\partial r} \left(\frac{V}{r}\right)\right)$$

horizontal advection

torque from surface drag

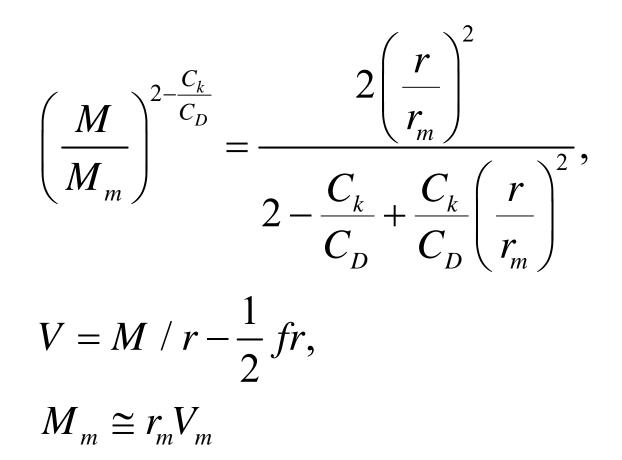
convergence of radial eddy flux of angular momentum

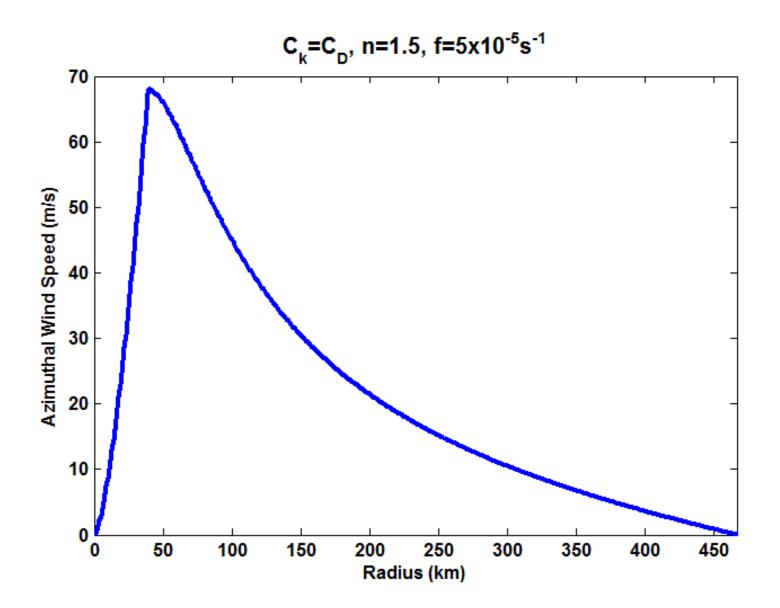
In steady state, azimuthal velocity profile must be concave

$$V \sim r^n,$$

$$n > 1$$

Inner core:





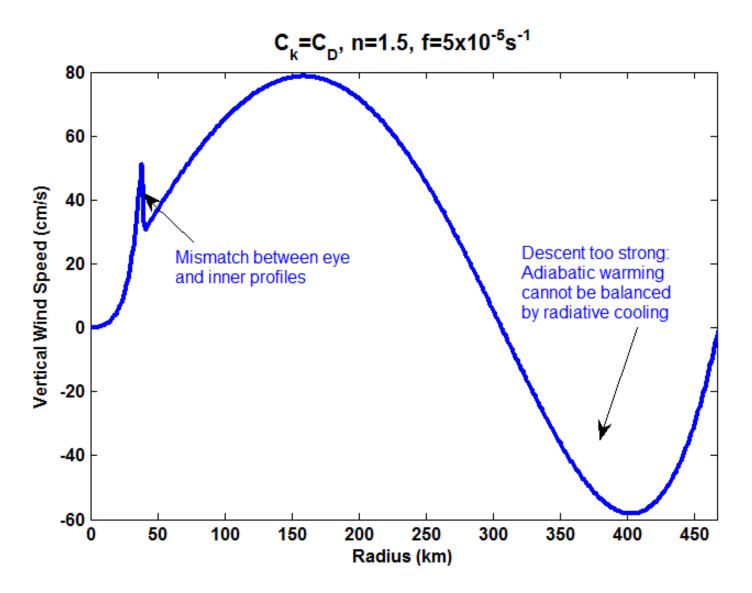
Approximate PBL Radial Wind:

$$h\frac{\partial M}{\partial t} \approx 0 = -uh\frac{\partial M}{\partial r} - C_D r |\mathbf{V}|V$$
$$\rightarrow hu \approx \frac{C_D r |\mathbf{V}|V}{\frac{\partial M}{\partial r}}$$

Vertical Velocity:

$$w \simeq -\frac{1}{r}\frac{\partial}{\partial r}(rhu)$$

Vertical Velocity



Outer Region

Assume zero moist convection, so subsidence warming balances radiative cooling:

$$w = -w_{cool} \equiv \frac{-\dot{Q}_{rad}}{c_p \frac{T}{\theta} \frac{\partial \theta}{\partial z}}$$

Assume w_{cool} constant:

Integrate

$$w \simeq -\frac{1}{r}\frac{\partial}{\partial r}(rhu)$$

$$\rightarrow uh = -\frac{1}{2} w_{cool} \frac{\left(r_o^2 - r^2\right)}{r}$$

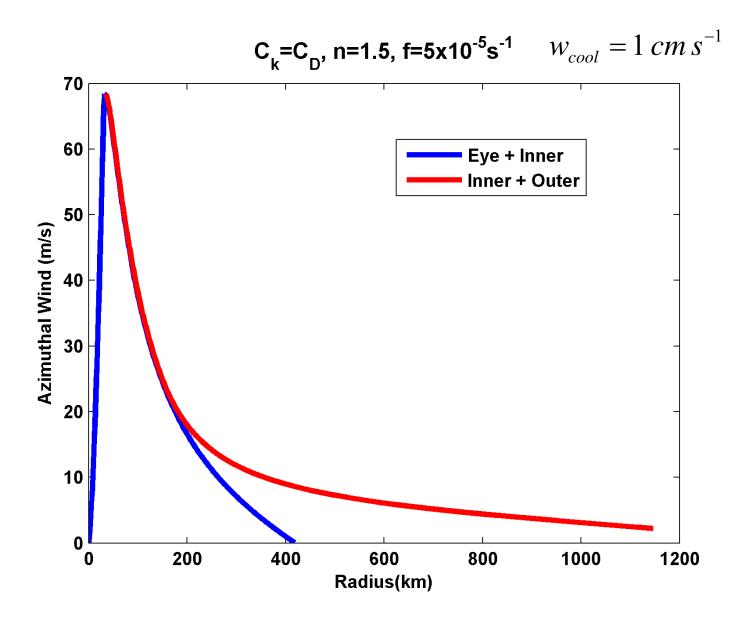
Now using
$$h \frac{\partial M}{\partial t} \approx 0 = -uh \frac{\partial M}{\partial r} - C_D r |\mathbf{V}| V$$

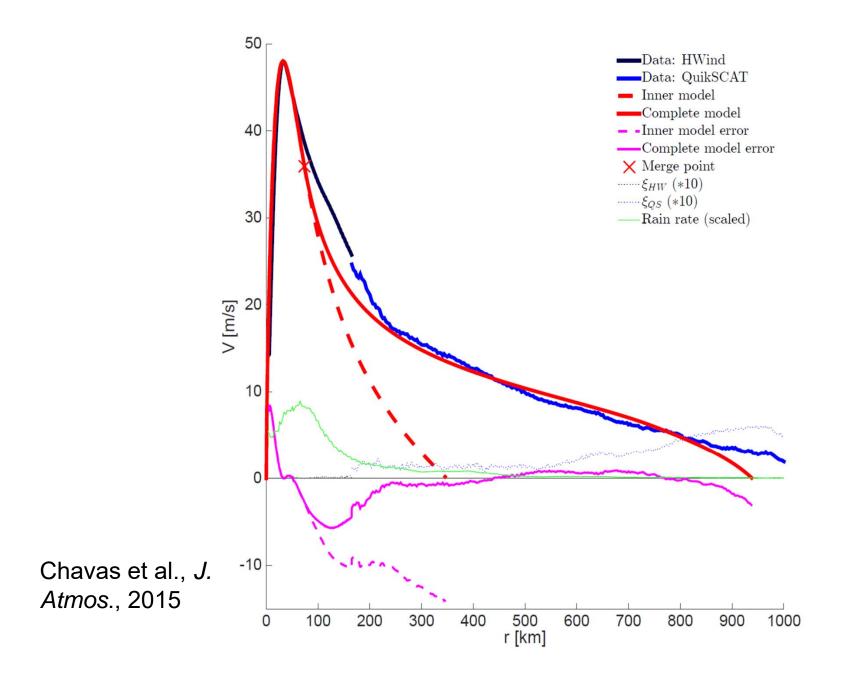
and taking $|\mathbf{V}| \simeq V$

results in
$$\frac{dm}{dr} = \frac{2C_D}{w_{cool}} \frac{m^2}{r_o^2 - r^2} - fr,$$

where $m \equiv rV$

Integrate inward from $r = r_o$. No exact analytic solution.





Tropical Cyclone Inner Core Dynamics

Main Assumptions

Axisymmetric flow

 Gradient and hydrostatic balance above PBL

 Troposphere neutral to slantwise moist convection outside eye Assume that interior flow is always close to gradient and hydrostatic balance:

$$\frac{M}{r_b^2} = \frac{M}{r_o^2} - (T_b - T_o) \frac{ds^*}{dM},$$
 (1)

where r_o is the radius of the angular momentum surface where its absolute temperature is T_o . Define that point as the point along the angular momentum surface at which the azimuthal velocity changes sign. At that point, by definition,

$$M = \frac{1}{2} f r_o^2$$

so (1) becomes:

$$r_{b}^{2} = \frac{M}{\frac{1}{2}f - (T_{b} - T_{o})\frac{ds^{*}}{dM}}.$$
 (2)

Also assume Richardson Number criticality of outflow:

$$\frac{\partial T_o}{\partial M} \cong -\frac{Ri_c}{r_t^2} \left(\frac{dM}{ds^*}\right) \tag{3}$$

Conservation of entropy in PBL (in *M* coordinates):

$$\frac{\partial s_b}{\partial \tau} + \dot{M} \frac{\partial s_b}{\partial M} = g \frac{\partial F}{\partial P} + D, \qquad (4)$$

where \dot{M} is the total time derivative of angular momentum, F is the vertical turbulent flux of entropy, and D represents the irreversible entropy sources of owing to kinetic energy dissipation, non-equilibrium evaporation of liquid water, and diffusion of water vapor.

$$\dot{M} = gr\frac{\partial \tau_{\theta}}{\partial P}$$

Substitute into (4) and integrate over depth of PBL:

$$\Delta p_{b} \frac{\partial s_{b}}{\partial \tau} + gr\tau_{\theta s} \frac{\partial s_{b}}{\partial M} = gF_{s} + \overline{D} \qquad (5)$$

$$F_{s} = \frac{C_{k}\rho |\mathbf{V}| (k_{0}^{*} - k_{b})}{T_{s}} \cong C_{k}\rho |\mathbf{V}| (s_{0}^{*} - s_{b})$$
$$\tau_{\theta s} = -C_{D}\rho |\mathbf{V}| V$$

$$\overline{D} \cong g\rho \frac{C_D |\mathbf{V}|^3}{T_s}$$

(Dissipative heating)

(5) becomes

$$h\frac{\partial s_{b}}{\partial \tau} - C_{D}r |\mathbf{V}| V \frac{\partial s_{b}}{\partial M} = C_{k} |\mathbf{V}| \left(s_{0}^{*} - s_{b}\right) + C_{D}\frac{|\mathbf{V}|^{3}}{T_{s}}, \qquad (6)$$
$$h \equiv \frac{\Delta p_{b}}{\rho g}$$

Dealing with Eye Dynamics

Begin with equation for thermal wind balance:

Assume solid body rotation inside r=r_{max}:

$$V_{gb} = -r_b \left(T_b - T_o\right) \frac{ds^*}{dM_g}$$
$$V_{gb} = V_{max} \left(\frac{r_b}{r_{max}}\right)$$

Solve for temperature of eye:

$$\frac{ds^*}{dM_g} = \frac{-1}{T_s - T_t} \frac{V_{max}}{r_{max}}$$
(7)

Note: Continue to solve (6) for s_b in eye, but this is less than (and decoupled from) s^*

Complete System

$$h\frac{\partial s_{b}}{\partial \tau} - C_{D}r |\mathbf{V}| V \frac{\partial s_{b}}{\partial M} = C_{k} |\mathbf{V}| \left(s_{0}^{*} - s_{b}\right) + C_{D} \frac{|\mathbf{V}|^{3}}{T_{s}} (8)$$

$$r_{b}^{2} = \frac{M}{\frac{1}{2}f - (T_{b} - T_{o})\frac{ds^{*}}{dM}} (9)$$

$$\frac{\partial T_{o}}{\partial M} \approx -\frac{Ri_{c}}{r_{t}^{2}} \left(\frac{dM}{ds^{*}}\right) (10)$$

$$V = \frac{M}{r_{b}} - \frac{1}{2}fr_{b} (11)$$

Also, $T_o = T_t$ at $r = r_m$, $s_b = s * except$ in eye, where (7) applies.

MATLAB code of model (very fast!)

ftp://texmex.mit.edu/pub/emanuel/scripts/smodel_public.m

Approximate System

- Neglect pressure dependence of s₀*
- V~M/r (inner core)
- Neglect dissipative heating
- **|V|** ~ *V*
- h=constant

$$V^{2} = -(T_{b} - T_{o})M \frac{\partial s^{*}}{\partial M}, \qquad (12)$$

$$\frac{\partial T_o}{\partial M} = -\frac{Ri_c}{r_t^2} \left(\frac{\partial s}{\partial M}\right)^{-1},$$
(13)

$$h\frac{\partial s^{*}}{\partial \tau} - C_{D}VM \frac{\partial s^{*}}{\partial M} = C_{k}V(s_{0} - s^{*}). \quad (14)$$

Differentiate (14) with respect to *M*, and substitute from (12) and (13):

$$\frac{(T_b - T_o)h}{V} \frac{\partial}{\partial \tau} \left(\frac{V^2}{T_b - T_o} \right) = \frac{M}{V} \frac{\partial V}{\partial M} \left[3C_D V^2 - C_k \left(T_b - T_o \right) \left(s_0 - s^* \right) \right] + C_D \frac{Ri_c}{r_t^2} M^2 - C_k V^2.$$
(15)

Suppose that maximum winds always occur on the same M surface. Then, using

$$M_{max} \simeq r_{max}V_{max}$$
 and $r_{max}^2 = r_t^2 \frac{C_k}{C_D}Ri_c^{-1}$,

$$\frac{\partial V_m}{\partial \tau} \cong \frac{C_k}{2h} \left(V_{max}^2 - V_m^2 \right) \tag{16}$$

From previous lecture,

$$V_{max}^{2} = \frac{C_{k}}{C_{D}} \left(\frac{1}{2} \frac{C_{k}}{C_{D}}\right)^{\frac{C_{k}}{2 - \frac{C_{k}}{C_{D}}}} (T_{b} - T_{t})(s_{0} - s_{e}^{*})$$
(17)

If V = 0 at t = 0, the integration of (16) gives

$$V_{m}(\tau) = V_{max} \tanh\left(\frac{C_{k}V_{max}}{2h}\tau\right)$$
(18)

C_kV_{max}t/2h

Note that first on right of (15) term steepens V gradient when

$$V^{2} > \frac{1}{3} \frac{C_{k}}{C_{D}} (T_{b} - T_{o}) (s_{0} - s^{*})$$

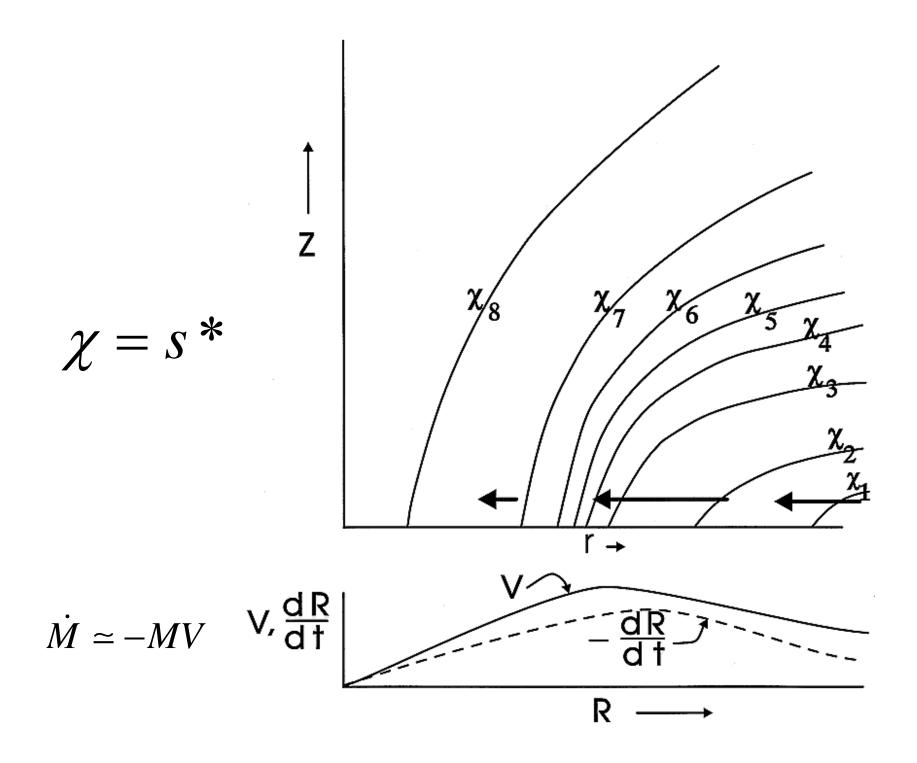
V gradient cannot steepen indefinitely:

$$\begin{split} \varsigma &= \frac{V}{r} + \frac{\partial V}{\partial r}, \\ \frac{\partial}{\partial r} &= \frac{\partial M}{\partial r} \frac{\partial}{\partial M} = r \left(f + \frac{V}{r} + \frac{\partial V}{\partial r} \right) \frac{\partial}{\partial M} = r \left(f + \varsigma \right) \frac{\partial}{\partial M} \\ \rightarrow \varsigma &= \frac{V}{r} + r \left(f + \varsigma \right) \frac{\partial V}{\partial M} \\ \varsigma &= \frac{\frac{V}{r} + fr \frac{\partial V}{\partial M}}{1 - r \frac{\partial V}{\partial M}} \end{split}$$

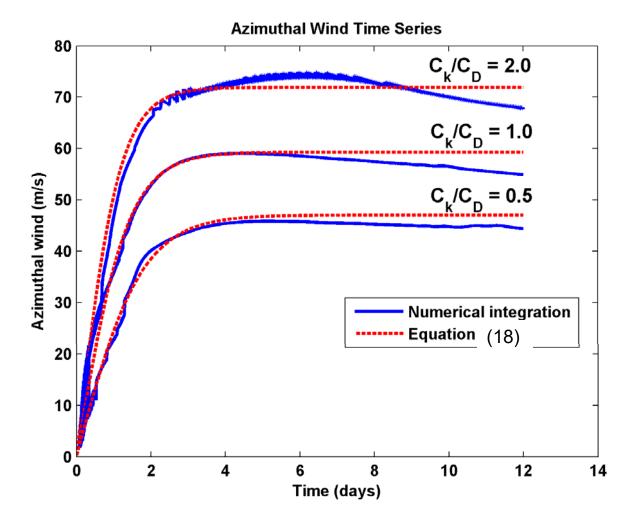
$$\varsigma \to \infty$$
 when $\frac{\partial V}{\partial M} \to \frac{1}{r} \cong \frac{V}{M}$

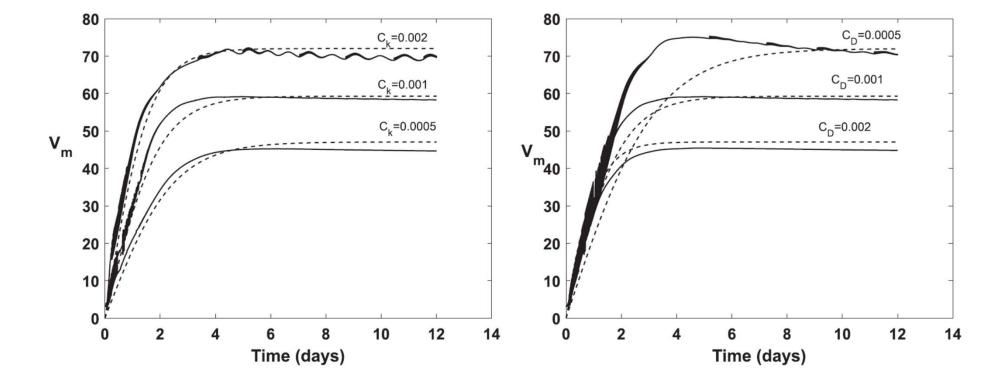
Eyewall undergoes frontal collapse!

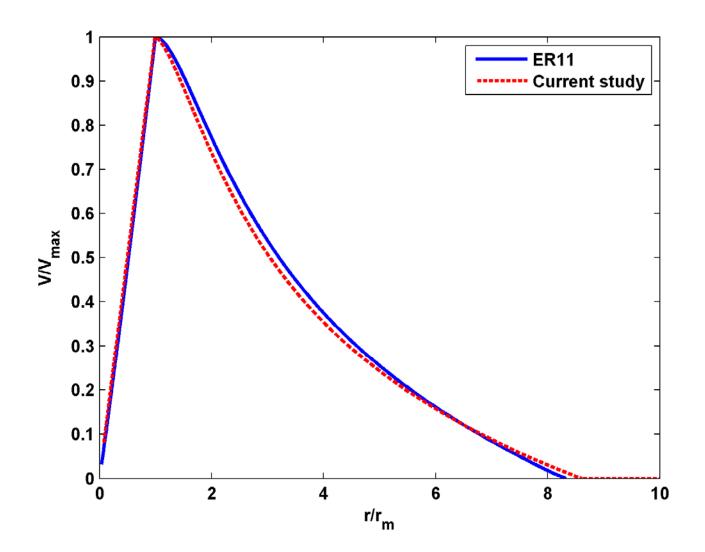
This can only be prevented by 3-D eddies. In the present model, we prevent frontal collapse by insisting on solid body rotation everywhere inside r_{max} .



Comparison with numerical solution of (7) - (11)







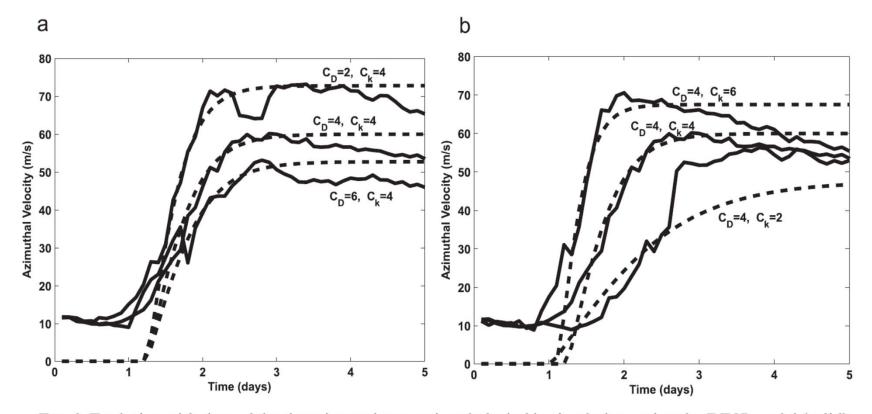


FIG. 3. Evolution with time of the domain maximum azimuthal wind in simulations using the RE87 model (solid), compared with solutions of (19) (dashed), varying (a) the drag coefficient and (b) the enthalpy exchange coefficient. Curves are labeled with the values of the exchange coefficients in units of 10^{-3} .