
Tropical Cyclone Structure



Three Regions

Eye  (w < 0)

Inner Core  (w > 0)

Outer region (w < 0)



The Eye



Angular Momentum Budget in Eye 
Boundary Layer



Blue arrows show turbulent angular momentum fluxes. In eye 
PBL, radial M flux from eyewall must balance oceanic M sink.

Steady state eye subsidence owing 
to radiative cooling



Eye Angular Momentum Budget
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In steady state, azimuthal velocity profile must be concave
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Inner core:
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Approximate PBL Radial Wind:
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Vertical Velocity:
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Vertical Velocity



Outer Region
Assume zero moist convection, so subsidence warming 
balances radiative cooling:
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Integrate
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Integrate inward from r = ro. No exact analytic solution. 
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Tropical Cyclone Inner Core 
Dynamics



Main Assumptions

Axisymmetric flow

Gradient and hydrostatic balance above 
PBL

Troposphere neutral to slantwise moist 
convection outside eye



Assume that interior flow is always close to gradient and 
hydrostatic balance:
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where ro is the radius of the angular momentum surface 
where its absolute temperature is To. Define that point as the 
point along the angular momentum surface at which the 
azimuthal velocity changes sign. At that point, by definition,
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Also assume Richardson Number criticality of outflow:
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Conservation of entropy in PBL (in M coordinates):
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where     is the total time derivative of angular momentum, F is the 
vertical turbulent flux of entropy, and D represents the irreversible 
entropy sources of owing to kinetic energy dissipation, non-
equilibrium evaporation of liquid water, and diffusion of water 
vapor. 
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Substitute into (4) and integrate over depth of PBL:
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(Dissipative heating)



(5) becomes
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Dealing with Eye Dynamics

  *
b

g
gb b o

dsV r T T
dM

  Begin with equation for 
thermal wind balance:
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Assume solid body 
rotation inside r=rmax:
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Solve for 
temperature of eye:

Note:  Continue to solve (6) for sb in eye, but this is less 
than (and decoupled from) s*

(7)
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Complete System

, , * , (7) .o t m bAlso T T at r r s s except in eye where applies  
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MATLAB code of model
(very fast!)

ftp://texmex.mit.edu/pub/emanuel/scripts/smodel_public.m



Approximate System

Neglect pressure dependence of s0*
V~M/r   (inner core)
Neglect dissipative heating
|V| ~ V
h=constant
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Differentiate (14) with respect to M, and substitute from 
(12) and (13):
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Suppose that maximum winds always occur on the same M 
surface. Then, using 
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From previous lecture, 
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If V = 0 at t = 0, the integration of (16) gives



Note that first on right of (15) term steepens V gradient when 
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V gradient cannot steepen indefinitely:
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Eyewall undergoes frontal collapse!

This can only be prevented by 3-D eddies. In the present 
model, we prevent frontal collapse by insisting on solid 
body rotation everywhere inside rmax. 
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Comparison with numerical solution of (7) – (11) 
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Varying Ck Varying CD






