

Improved global tropical cyclone forecasts from **NOAA: Lessons learned and path forward**

RICANE FORECAST

HWRF forecast for ETAU (18W) at 2015090618

IMPROVEMEN

Dr. Vijay Tallapragada Chief, Global Climate and Weather Modeling Branch & HFIP Development Manager NOAA National Weather Service/NCEP/EMC, USA

Typhoon Seminar, JMA, Tokyo, Japan. January 6, 2016

Rapid Progress in Hurricane Forecast Improvements

Key to Success: Community Engagement & Accelerated Research to Operations

Operational Hurricane Modeling System Development

Continue the community modeling approach for accelerated transition of research to operations

International partnerships for accelerated model development & research

Effective and accelerated path for transitioning advanced research into operations

JMA, January 6, 2016

Significant improvements in Atlantic Track & Intensity **Forecasts**

What it takes to improve the models and reduce forecast errors???

Resolution

Physics

Data Assimilation

Targeted research and development in all areas of hurricane modeling

Lives Saved

Only 36 casualties compared to >10000 deaths due to a similar storm in 1999

1999 Orissa Cyclone

- Deadliest storm since 1971
- 155 mph winds and 8m (26 ft) storm surge at landfall
- 10000 causalities, damages ~5 Billion USD
- Operational NWP at IMD based on 24-hr forecasts from NCEP QLM
- Accurate 48-hr forecast lead time for tracks, no skill for intensity forecasts
- Inadequate guidance on storm surge, rain & flood

Advanced modelling and forecast products given to India Meteorological Department in real-time through the life of Tropical Cyclone Phailin

2014 DOC Gold Medal - HWRF Team

A reflection on Collaborative Efforts between NWS and OAR and international collaborations for accomplishing rapid advancements in hurricane forecast improvements

NWS: Vijay Tallapragada; Qingfu Liu; William Lapenta; Richard Pasch; James Franklin; Simon Tao-Long Hsiao; Frederick Toepfer

OAR: Sundararaman Gopalakrishnan; Thiago Quirino & Frank Marks, Jr.

Advanced Research to Operations Transitions

Accurate representation of storm structure using advanced DA methods

Collection, transmission and assimilation of inner core hurricane observations using Tail Doppler Radar directly from NOAA's P3 aircraft

NCE

Significant impact of TDR Data Assimilation on Initial Vortex Structure

HWRF is the only model in the world assimilating real-time hurricane inner core Tail Doppler Radar (TDR) data from NOAA's P3 aircraft

New in 2015 for HWRF in Operations

System & Resolution Enhancements

- Replace current partial HWRF python based scripts with complete Python based scripts for a unified system
- Increase the horizontal resolution of atmospheric model for all domains from 27/9/3 to 18/6/2 km.

Initialization/Data Assimilation Improvements

- Upgrade and improve HWRF vortex initialization scheme in response to both GFS and HWRF resolution increases
- Upgrade Data Assimilation System with hybrid 40-member HWRF-based highresolution ensembles and GSI system.

Physics Advancements

Upgrade Micro-physics process (Ferrier-Aligo); replace GFDL radiation with RRTMG scheme including sub-grid scale partial cloudiness; Upgrade surface physics and PBL, replace current GFDL slab model to more advanced NOAH LSM.

First time in 2015....

- Self cycled HWRF ensembles based warm start for TDR DA
- Expand HWRF capabilities to all global (including WP/SH/IO) basins through 7storm capability in operations to run year long

HWRF Upgrade Plan for 2015 Implementation

Multi-season Pre-Implementation T&E

	GFS Upgrades	GFS Model Physics and DA upgrade					Combined
	Control (H15Z)	Baseline (H15B)	NOAH LSM (H15W)	Upgraded Ferrier (H15W)	RRTMG/ PBL/ Surface Physics (H15W)	DA* (H15T)	H215
Description	Create a new control configuration of 2014 Operational HWRF run with newly upgraded GFS T1534 IC/BC	 Resolution increase: 18/6/2km w/ same domain size; Python scripts New GFS T1534 Init improvement, GFS vortex filter 	NOAH LSM (w/ Ch cap over land)	Separate species, w/o advection	1.Radiation 2.Variable α 3.Scale-aware partial cloudiness scheme	Hybrid GSI/ HWRF- EPS based DA	Baseline + NOAH/LSM +newMP+RRTMG+ Surface Physics + PBL + DA changes
Cases	Four-season 2011- 2014 simulations in ATL/EPAC, cases (~2300)	Four-season 2011- 2014 simulations in ATL/EPAC, cases (~2300)	Priority cases	Priority cases	Priority cases	Only TDR cases for 2011- 2014	Four-season 2011- 2014 simulations in ATL/EPAC, cases (~2300) WP/SH/IO 2013- 2014 (~1200 cases)
Platforms	Jet/WCOSS	Jet	WCOSS	Jet	Jet/Zeus	Jet	Jet/WCOSS/Zeus

3x computer resources within the HWRF operational time window.

2015 HWRF: Further improvements in the Hurricane Intensity Forecasts in All Basins

The Threat

Real-time Operational Configuration for 2015 HWRF

Highlights of 2015 HWRF

INCEP Typhoon Seminar

JMA, January 6, 2016

Have the models improved in the past decade?

JMA, January 6, 2016

Improved Modeling of Hurricane Dynamics, Physics, and Air-Sea-Wave-Land Interactions

- Hurricane Katrina reminds us of critical and complex interactions between atmosphere, ocean, waves and land – all need to be accurately represented in numerical models for improving the forecast guidance
- NCEP Operational HWRF has demonstrated significant progress in improving the forecasts for high-impact events like Katrina
- Future efforts will continue with emphasis on high-resolution solutions for further improvements in hurricane intensity forecasts

High-Resolution HWRF Forecasts for Hurricane Andrew

01Z21aug1992 20.1 15 275 200 205 290 295

JMA, January 6, 2016

ě

New Products from 2015 HWRF

JMA, January 6, 2016

HWRF forecast for HALOLA (01C) at 2015072400 HWRF forecast for Noul (06W) at 2015050812

HWRF FORECAST - TRACK ERROR (NM) STATISTICS VERIFICATION FOR WESTERN PACIFIC BASIN 2015-2015 - STRONG STORM

HWRF FORECAST - INTENSITY VMAX ERROR (KT) STATISTICS VERIFICATION FOR WESTERN PACIFIC BASIN 2015-2015 - STRONG STORM

HWRF FORECAST - TRACK ERROR (NM) STATISTICS VERIFICATION FOR WESTERN PACIFIC BASIN 2015-2015 - STRONG STORM

HWRF FORECAST - BIAS ERROR (KT) STATISTICS VERIFICATION FOR WESTERN PACIFIC BASIN 2015-2015 - STRONG STORM

Verification of Rapid Intensification Forecasts from NCEP Operational HWRF

- Significant RI predictability skill first demonstrated in the Western North Pacific basin
- RI Skills are much lower in the Atlantic and Eastern Pacific basins

Conditions for triggering Rapid Intensification in HWRF Model

- Phase-Lock Mechanism for RI Onset
- High POD and Low FAR compared to other models

Structure of HWRF Model Storms at Extremely Strong Intensity Stage

- Development of Double Warm Core Structure for intense TCs
- Possible connections with warmer stratospheric air

Scientific Challenges for improved tropical cyclone RI forecasts

- HWRF is good at developing SEFs but not ERCs
- Role of advanced scale-aware physics for more accurate representation of physical processes for RI events

Improvement in RI Forecasts: North Atlantic and Eastern Pacific Basins

PDF Comparison of HWRF Predicted Intensity and Observed Intensity

JMA, January 6, 2016

PDF Comparison of HWRF Predicted 24h Intensity Changes and Observed 24h Intensity

Verification of RI in the HWRF model **Western North Pacific basins**

POD increased to 36% with 2km 2015 HWRF

HWRF Forecasts for 2013-2014 Western Pacific STYs

For the six Super Typhoons (STYs) in 2013-2014 (17W USAGI, 26W FRANCISCO, 28W LEKIMA, 31W HAIYAN, 11W HALONG and 19W VONGFONG), HWRF track and intensity forecasts are the best, with close to zero intensity bias and significantly lower intensity errors.

HWRF in 2013 West Pac: Typhoon Soulik

Performance of Operational HWRF for Typhoon Soulik with accurate track, intensity, structure, rainfall and RI forecasts

NCEP Typhoon Seminar

JMA, January 6, 2016

HWRF in 2013 West Pac: Typhoon Haiyan

INCEP Typhoon Seminar

JMA, January 6, 2016

RI Forecasts for all storms in the WPAC Basin in 2013 HWRF captured RI for all 10 Super Typhoons of 2013

Typhoon Soulik (07W), Utor (11W), Usagi (17W), Pabuk (19W), Wutip (20W), Danas (23W), Nari (24W), Francisco (26W), Lekima (28W), Krosa (29W), and Haiyan (31W). FOREGUEL IN

78-hr HWRF Forecast location and intensity valid at 00Z 28 March 2015 for Typhoon Maysak

Observed intensity: 140 kts 78-hr Predicted intensity: 120 kts HWRF IR: MAYSAK 2015032800 f78

Storm Center: (8.318N,137.97E) Cente Forecast Valid: 06Z31MAR2015 Intensity: 120kts

Real-time Forecasts from HWRF: 60hrs before pass over Chuuk State and 84hrs before reaching Category 5

78-hr HWRF Forecast location and intensity valid at 00Z 13 March 2015 for TC Pam

Observed intensity: 140 kts 72-hr Predicted intensity: 141 kts

Intensity: 141kts

High-Resolution Animations of Simulated Radar Reflectivity, IR Imagery and accumulated rain swath for Tropical Cyclone PAM

60-hrs before reaching category 5 of Tropical Cyclone PAM: HWRF (red), GFS (blue) and Best Track (Black)

Tropical Cyclone PAM captured by the HWRF outer domain

JMA, January 6, 2016

What Triggers RI in HWRF Model?

Phase-lock between warm core, storm strength and mid-level moisture at RI Onset

FIG. 1. Radius-height cross section of the relative humidity (shaded, unit %), the tangential wind (black contours at intervals of 3 ms⁻¹), and potential temperature anomalies with respect to the far-field environment (red contours at interval of 1ºK, solid/dotted contours for positive/negative values) in an idealized experiment with the HWRF model (Kieu et al. 2014).

All idealized exps show a consistent structure at the onset of RI including a warm core at 500-300 hPa, a saturated core from surface to ~ 500 hPa, and sufficient tangential wind (> 18 ms⁻¹)

Of all ~100 real-time RI cases in the WPAC from HWRF we analyzed, the phase-lock mechanism is observed in all of them at the time of RI onset.

Phase-lock conditions are necessary but not sufficient for triggering the RI. Interactions with dry air, topography etc. could prevent the model to experience RI even after possessing the phase-lock conditions

HWRF 18-h forecast of Usagi init at 2013091706

Phase-lock mechanism seen in non RI events as well – however, RI was not imminent for several cases due to "external" factors (here, it is land interaction for Typhoon Man-Yi 16W, 12Z Sept. 13, 2013

HWRF fails to predict RI when the initial storm is >hurricane strength

Vertical cross-sections of (a) tangential wind (ms_); (b) relative humidity (shaded %) and specific humidity (contours, g/kg) and (c) temperature anomaly (shaded, K) and absolute temperature (contours, K) for the mature state of Super Typhoon Usagi (17W) after 48-h into integration, initialized at 0000 UTC 19 September 2013.

Additional findings from HWRF on Rapid intensification

Triple eye-wall formation and subsequent eye-wall replacement for Typhoon Usagi (insufficient temporal frequency of output)

Question: Is DWC a realistic phenomena?

ě
HWRF double-warm core structure

Hypotheses

 Hypothesis 1: At high intensity (Vmax > 65 ms⁻¹), the lower stratosphere can interact with TCs and produce a DWC structure, allowing TCs to further strengthen and maintain their high intensity.

• Hypothesis 2: The lower stratosphere can moderate the distribution of intense TCs and thus play a significant role in the TC-climate relationship.

Case study: DWC structure

3D cross section at 72h of Francisco initialized at 1200 UTC 17 July 2013,

Case study: UIL-induced warming tendency

UIL could induce a substantial amount of warm advection from the lower stratosphere toward storm center;

Low stratosphere: NATL/WPAC 2013

WPAC: more TCs with double warm core??? How about the higher MPI with colder outflow temperature? NATL: less TCs with no double warm core

Implications

36 30 25 100 10 Pressure (hPa) -15 400 -20 500 -25 600 -30 700 -35 800 40 008 1000 300 350 400 450 500 250 Radial distance (km)

FRANCISCO 26w, d23, Azimuthally averaged, 2013101712, 72 h FCST

The DWC structure may go outside the traditional framework of a TC with a single warm core.

Distribution of intense TCs should take into account the lower stratosphere beyond the outflow temperature;

Can we see DWC from AMSU data?

50 – km resolution from ATMS AMSU data is too coarse to resolve the DWC:

AMSU channels 5, 6,7,8 appear to be insufficient to resolve the gap between 2 warm cores;

Can we see DWC from AMSU data?

JMA, January 6, 2016

Secondary Eyewalls and Eyewall Replacement Cycles: New research frontiers for TC intensity

Hawkins and Helveston (2008)

Precipitable Water (PW)

Secondary eyewall Formation in the simulations

ě.

Abarca and Corbosiero (2015)

Observations

- Description of structures
- Evaluation of numerical simulations

Typhoon Sinlaku (2008)

WRF

ě

Edouard (2014)

Operational HWRF generates secondary eyewalls but they are rare, as in other mesoscale models (ARW or RAMs)

51/90

(ð

It is now established that HWRF is capable of generating secondary eyewalls

Now assessing:

- How well HWRF captures secondary eyewall characteristics
 - Duration
 - Radial position
 - > Azimuthal average kinematic structure of the storm

Hurricane Edouard: 10m Wind Speed (ms⁻¹) *Valid: September 15th 18Z* Wind Speed (m/s) 15 Sept. 18Z HWRF

Does initial size matter?

Hurricane Edouard: Surface Latent Heat Flux (Wm⁻²) Valid: September 15th 18Z

HWRF (t=0)

Preferential treatment of heat fluxes

Advanced Research Findings from HWRF Model

Rapid Weakening: New findings

Narrow wavenumber 1 asymmetry

DB: guillermo_2015-07-31_06_4800.nc_km.nc

DB: guillermo_2015-07-31_06_6000.nc_km.nc

Presence of hook feature in several storms.....

VERY MUCH SO SOMEWHAT

- Guillermo (2015 09E) most cycles after 2015073000
- Maysak (2015 04W) 2015041112
- Higos (2015 02W) basically every cycle
- Amanda (2014 01E) any cycle after 2014052312
- Vance (2014 21E) there are hints of it in many cycles, but it gets worse after 2014110306
- Eduoard (2014 06L) maybe, not a priority case, could be ET as well
- Fay (2014 07L) cycles beginning with 2014101106, could be ET later
- Bertha (2014 03L) 2014080400-2014080412 and maybe a few around those
- Hagupit (2014 22W) 2014120306-2014120406 (after this forecasts took it over land)
- Tapah (2014 06W) 2014042718-2014042900
- Faxai (2014 03W) looks like a few cycles starting with 2014022218, but not as clear
- Ana (2014 02C) 2014101700-2014101900 (before this land interaction with Hawaii)
- Francisco (2013 26W) 2013102200-2013102418
- Lorenzo (2013 13L) 2013102118-2013102218
- Jerry (2013 11L) 2013092900-2013092906
- Gabrielle (2013 07L) 2013091112

RW and SLP hooks by VWS and Dry Intrusion

- VWS and dry intrusion weaken the storm
- Downdrafts generate a local warm core => slp/hgt hooks
 - Dry intrusion related downdraft
 - Environmental VWS related downdraft
 - Compensational downdraft associated with strong convections in eyewall and rain bands
- VWS can also tilt storm warm core, resulting in slp/hgt contour hooks/curves

Physics Strategy: Parameterization development general direction

To improve HWRF performance, with regard to:

- Track and intensity guidance
- Physically based criteria
 - » Rapid intensification
 - » Secondary eyewalls
 - Formation, evolution and kinematic characteristics
 - » Any other identified model bias
- Scale aware
 - To allow unified physics across model scales and applications
- Stochastic physics
 - To account for uncertainty, and variability in nature

Verification Issues

Model development strategies critically depend on verification results

Observational uncertainty can be dealt with, but differences in various best track data can hurt evaluation procedures (and future model developments).

JTWC's best track

JMA's best track

HWRF FORECAST - INTENSITY VMAX ERROR (KT) STATISTICS HWRF FORECAST - TRACK ERROR (NM) STATISTICS VERIFICATION FOR WESTERN PACIFIC BASIN 2013-2015 VERIFICATION FOR WESTERN PACIFIC BASIN 2013-2015 300 35 HWRF: HWRF Oper HWRF: HWRF Oper COTC: COAMPS-TC Fact/NVGM COTC: COAMPS-TC Fact/NVGM **JGSM: Japan Oper** JTWC: JTWC fact. 240 28 MX: ECMWF fact INTENSITY VMAX ERROR (KT) NVGM: NAVGEM INALX ERROR LAW) TWC: JTWC fact. 60 Track error with JGSM Intensity error 60 72 108 72 84 48 84 96 60 108 36 120 0 12 CASE1301 1195 24 36 48 96 120 12 CASE 613 564 515 985 HWRF FORECAST - TRACK ERROR (NM) STATISTICS Forecast lead time (hr) Forecast lead time (hr) HWRF project - NOAA/NCEP/EMC HWRF FORECAST - BIAS ERROR (KT) STATISTICS VERIFICATION FOR WESTERN PACIFIC BASIN 2013-2015 VERIFICATION FOR WESTERN PACIFIC BASIN 2013-2015 300 HWRF: HWRF Oper HWRF: HWRF Oper COTC: COAMPS-TC Fact/NVGM COTC: COAMPS-TC Fact/NVGM 28 JTWC: JTWC fact. EMX: ECMWF fact. 240 NVGM: NAVGEM JTWC: JTWC fact. ERROR (NM) 14 BIAS ERROR (KT) Ž 20 -1460 Track error without JGSM -28 Intensity bias 36 48 60 72 108 120 24 72 108 12 120 CASE 832 426 Forecast lead time (hr) CASE1301 1195 1077 865 663 project - NOAA/NCEP/EMC Forecast lead time (hr)

project

- NDAA/NCEP/EM

JTWC Vs JMA peak intensity difference

JTWC Vs JMA peak intensity difference

JTWC Vs JMA peak intensity difference

JTWC Vs JMA peak intensity comparison during 2013-2015

Track and intensity statistic plots of Western Pacific Basin (with GRAPEs) compared with JTWC best track data

108

120

114

Forecast lead

time (hr)

NCE

HWRF FORECAST - INTENSITY VMAX ERROR (KT) STATISTICS VERIFICATION FOR WESTERN PACIFIC BASIN 2015

Track and intensity statistic plots of Western Pacific Basin (with GRAPEs) compared with CMA's best track data

HFIP Experimental Regional Ensemble Prediction System in 2015

High-Resolution HWRF based Ensembles for Hurricane Forecasts at NATL Advanced probabilistic guidance with representation of forecast uncertainty

- 20-member 3km HWRF ensembles driven by GEFS for IC/BC and stochastic convective and PBL perturbations
- High-resolution probabilistic products provide forecast uncertainty in track. intensity, structure (size) and rainfall, along with ensemble mean products

Forecost lead time (hr)

10

CASE 147

108

Planned HWRF Model improvements for 2016 hurricane season

Dynamic and Baseline Upgrades

- 2016 GFS upgrade for boundary and lateral boundary conditions
- WRF-NMM dynamic core upgrade: V3.7.1a; Retaining non-hydrostatic state when nests move _
- Integration time step increase, 38+4/7s to 30s;
- Support up to eight storms in operations

Physics upgrades

- PBL upgrades, align with latest GFS EDMF PBL scheme,;
- Microphysics upgrades, Advected Ferrier-Aligo or Thompson scheme;
- Scale-aware convection scheme: Grell-Freitas scheme or GFS SAS:

Ocean/Wave Coupling

- ATMOS/Ocean/WAVE three-way coupling Intended to improve air-sea exchange coefficients and mixing in the oceanic upper layer
- Ocean model upgrades: MPIPOM or HYCOM for all ocean basins including WPAC

Data Assimilation

- HWRF ensemble based background covariance for all basins for observations
- Increment Adjustment Upgrade (IAU) to avoid initial spin up/down —

Additional Products

- New grid for MAG and AWIPS;
- Sustained wind swath

Forecast verification for WPAC with ocean coupling

Intensity Composite for Koppu 24W

New in 2016: Eight Storms Support Requested by NHC

NHC/CPHC storms have higher priority.

- 2016 upgrade: NHC/CPHC can use all eight slots,
- Storm Choices require a human (forecaster) decision if nstorms > 8.

Test Plan and Upgrade Schedule: 2016 HWRF

	Sensitivity Tests	GFS Upgrade 2015 HWRF	Infrastructure Upgrades (Baseline)	Physics Test	Wave Model Test	Final 2016 HWRF Test	EMC/NCO Transition
	Multiple	H16Z	H16B	H16P	H16W	H216 (EMC)	HWRF (NCO)
Detail	Old GFS Various HWRF sensitivity tests	New GFS Old HWRF with minimal bug fixes	New GFS HWRF with infrastructure upgrades. Some physics and dynamics upgrades.	All physics upgrades	Wave coupling included	Final HWRF config	NCO runs parallel of fake storms to test dataflow. Customers verify. Repeat until approval.
Cases	Limited Storms 2011-2015	2013- 2015 All AL CP EP	2013-2015 Mostly AL CP EP	2013- 2015 Mostly AL CP EP	2013-2015 Storms of wave interest	2013- 2015 All Bains	Fake Storms
Platform	WCOSS Jet/Theia	TO4 & Jet	TO4 & Jet	TO4 & Jet	TO4 & Jet	TO4 & Jet	TO4 (NCO)
Dates	2015 June-Jan	2016 Jan-June	2016 Jan-Feb	2016 Jan-Feb	2016 Jan-Feb	2016 Mar-June	2016 May

Long-Term Plans for Hurricane Modeling at NCEP

Basin-Scale HWRF/NMMB——Tropical NMMB Domain

Hurricane Models take over Hurricane Wave Forecasts

Development, T&E and Implementation Plans for HNMMB (supported by HFIP and HIWPP)

2016 June-Nov: uncoupled real-time demo 2016 Nov: single-storm, coupled, no-DA ready 2016 Nov-Dec: skill proven better than GFDL & comparable to HWRF 2017 Jan-May: HNMMB pre-implementation test 2017 Jun: HNMMB replaces GFDL operationally

HWRF-HYCOM-WAVEWATCHIII in 2016/2017

Three-way coupled system development is in mature stage HYCOM for all global tropical storms:

- Climatology based MPIPOM has exposed the limitations in Eastern Pacific basin in 2015 with strong El-Nino conditions
- HYCOM with RTOFS initialization has been in the development
- OMITT helped improve the initialization and physics of HYCOM
- 2016 HWRF upgrades will include testing of HWRF-HYCOM (or HWRF-MPIPOM with RTOFS initial conditions)

One-way or two-way coupling with WaveWatchIII Hurricane Wave Model (multi2)

- Possible unification of hurricane wave model with HWRF for all tropical cyclones (UMAC recommendations)
- Two-way coupled system expected to enhance the representation of wave impacts on surface layer physics
- 2016 HWRF upgrades will include either of these options, with fully coupled system planned for 2017

High-Resolution HWRF Ensembles in 2018

2016	2017	201	18	20	19	2020
GFDL —	— HNMMB	10-m HNM	nember MB Ens	HWRF/ embles	NEMS (N	Global Nests IGGPS)
HWRF Ensemb value during the (HFIP Demo).	2016/2017: Continue HWRF ensemble HFIP Demo (multi-					
Surge in comput operations allow implementing his ensembles	model regional ensembles); add HNMMB members to the mix 2016/2017: Develop advanced products for providing quidance					
Take advantage of ensemble DA, perturbations in physics and IC/BCs			on guidance and probabilistic forecasts			
Develop product NHC operations deterministic for	2018: 10-member HWRF/HNMMB ensemble implementation					
NCEP) Typhoon Seminar		JMA, Janu	ary 6, 2016			84/90 🦉

Basin-Scale Multi-Storm HWRF/HNMMB in 2018

_								
	2016	2017	2018	3	2019	2020		
	Basin-Sca	ale HWRF/NM	MB——Tr	Tropical NMMB Domain				
	Large basin forecast mu same time. Need to sho benefit) Primary focus i Seven day fore Such large dor good wave for HNMMB cou domain": -60 longitude; Cov	-scale domain Itiple storms a ow the value (s for NATL/EPA ecasts including mains are neede ecasts uld do a "trop) to +60 latitude, vers all storms.	ns that at the cost vs. C basins genesis. ed for ical cyclic in	2016 para 2017 oper 2018 H 2019 oper 2020 nest dom hydr	5: HWRF/HNMM Ilel 7: HWRF/HNMM 7ational (???) 8: NMMB basin-sca NMMB tropical of 2: HNMMB tropical of 2: HNMMB tropical of 2: HNMMB tropical of 3: ational 3: onward: devel 3: s to replace HN 3: ain with the ne 3: ostatic dycore	IB basin-scale IB basin-scale IB basin-scale ale operational Jomain parallel ical domain Iop global JMMB tropical w non- (NGGPS)		
N	CEP Typnoon Seminar		JIVIA, January 6	5, 2016		85/90 😂 🚺		

85/90

Tropical Domain HNMMB in 2019

Future Plans: Hurricane Physics

Align with HFIP and NGGPS Physics Strategy

Focus on improved air-sea interactions and inner core processes

Advanced scale-aware and stochastic physics with focus on multi-scale interactions

The Coupled System

Align with HFIP DA Strategy

Focus on inner core aircraft and all-sky radiance data assimilation

Advanced self-cycled HWRF EnKF-GSI Hybrid **Data Assimilation System** (HDAS)

Vortex relocation and initialization become part of Data Assimilation

data assimilation

Hybrid EnKF-GSI DA system: 2 way coupling

First guess

forecast

Is HWRF capable of representing/predic ting SEF/ERC?

Goals: Increase forecast accuracy at all lead times, especially during periods of rapid intensity changes; raise confidence levels for all forecast periods.

Tallapragada and Kieu, 2014: Real-Time Forecasts of Typhoon Rapid Intensification in the North Western Pacific Basin with the NCEP Operational HWRF model. TCRR, 2014, 3(2): 63-77. Kieu, Tallapragada and Hoggsett, 2014: Vertical structure of tropical cyclones at onset of the rapid intensification in the HWRF model Geophysical Research Letters; Volume 41, Issue 9, 16 May 2014, Pages: 3298–3306 Kieu, Tallapragada and Zhang, 2015: On the development of Double Warm Cores in intense Tropical Cyclones. J. Atmos. Sci. (submitted)

Rosado: Ph.D. Dissertation on relationship of lightning and RI in HWRF model Carter: MS Thesis on downstream impacts of RI for landfalling storms

Summary/Concluding Remarks

- HWRF has dismal RI predictability skills in the NATL and EPAC basins, getting better with time...
- HWRF has shown somewhat higher RI predictability in the WPAC basin
- A phase-lock mechanism is identified as a necessary condition for RI but not sufficient. Many external factors could inhibit model RI
- HWRF has better RI predictability when the initial storm intensity is weak. For storms with intensity > hurricane strength, HWRF fails to predict the RI
- HWRF captured very persistently DWC during the peak intensity for intense TCs (> 120 kt for ٠ longer than 12 h):
- HWRF real-time simulations show specific conditions for the DWC to take place; ٠
- More observations/higher model resolution at upper level should be conducted to capture the ٠ existence of high level returning inflow.
- Possible solutions for improved RI: (a) increased resolution; (b) improved physics including scale aware features; (c) better initialization and DA and (d) high-resolution ensembles

Real-time and pre-implementation T&E HWRF products: http://www.emc.ncep.noaa.gov/HWRF

