

Model-produced

観測で降水最大がダウンシアー直下よりやや左側 に出現するのはどういうメカニズムによるか f面鉛直シアー実験で用いたモデルは解像度が粗く 凝結物質の(水平)移流を含まず。また、降水最 大の方位は積分のごく初期の段階で得られたもの。 長時間積分(~72h)を行っても同様の結果が得 られるか

実データ実験の概要

モデル:静力学,水平解像度20km,鉛直16層, 栗原の対流調節(凝結物質の移流なし)
台風渦:中心気圧や強風半径を考慮して人工的に作成
初期値・側面境界値:気象庁全球解析値 移動経路と中心気圧

環境風の鉛直シアー

Remarkable agreement between the local vertical shear (60-km) and SHIPS estimates (500-km) was found, indicating that the local shear strongly reflected the environmental flow. Reasor et al. $(2009) \downarrow$

波数1鉛直流の振幅比較

Hour

降水最大の方位別出現頻度(実データ実験)

shear ^

実データ実験の結果は 観測事実と合致! 理想実験(鉛直シアー 流+軸対称渦)とは何 か異なる状況が生じて いるはず。((

Chaba

冷却最大や加熱最大のシアーに相対的な出現方位

2D Trajectory

気塊の高度変化と非断熱加熱

気塊の温位と相対湿度の変化

$$\tau_1(r_{\max}) = \frac{p}{R_{gas}} V_{\max}\left(\frac{2V_{\max}}{r_{\max}} + f\right) S$$

2 波数1の温度変化から温度偏差を診断

移動座標系で波数1成分の準定常性を仮定(

$$\frac{\partial T_1}{\partial t} = HAD_1 + (VAD + DHT)_1 = 0$$
$$(VAD + DHT)_1 \Rightarrow F_1$$

$$\hat{T}_1 = \frac{r}{V}\hat{F}_1$$
$$\mu_{T1} = \mu_{F1} + \pi/2$$

HAD1とF1の振幅比較

9

2 波数1の温度変化から温度分布を診断

1.9

-1.0

-1.0

g

2 気温・比湿偏差推定値の検証

9

9

 $\frac{\Delta\xi}{\Delta p} = \frac{RT_{1\,\text{max}}}{pV_{\text{max}}} \left/ \left(f + \frac{2V_{\text{max}}}{r_{\text{max}}} \right) \right|$

現実には渦軸傾斜はもっと小さい?

凝結物質(を含む気塊)が下降流域へ移動すると蒸 発・冷却・湿潤化が生じる→アップシアー側での昇 温および乾燥化を抑制(

•

 ・湿潤化により気塊が上昇流域に達した際に凝結しや すくなりダウンシアー右側での断熱冷却が抑制される(

アップシアー側での昇温の抑制とダウンシアー側で の冷却の抑制は気温のアノマリーの成長を減じ渦軸 傾斜を減じる(

モデル台風の移動がSTRで説明できるか

(PTBとNSTはほぼ相殺)(

移動機構への渦軸傾斜の関与(

正味の加熱冷却(FRC)→NST 摂動流による水平移流(AAD)→PTB(

加熱関数を用いたf面鉛直シアー実験

AFC:
$$\oint \delta Q_{AFC}(r,\lambda,\sigma,t) = -c_p \frac{\left[T(r,\lambda,\sigma,t) - \overline{T}(r_e,\sigma,t)\right] - \left[\overline{T}(r,\sigma,t_0) - \overline{T}(r_e,\sigma,t_0)\right]}{\tau_R}$$

SFC:
$$\oint \delta Q_{SFC}(r,\sigma,t) = -c_p \frac{\left[\overline{T}(r,\sigma,t) - \overline{T}(r_e,\sigma,t)\right] - \left[\overline{T}(r,\sigma,t_0) - \overline{T}(r_e,\sigma,t_0)\right]}{\tau_R}$$

f面鉛直シアー実験(非対称加熱 .vs. 軸対称加熱)

非対称加熱が渦軸直立に寄与している可能性 (f 面鉛直シアー実験)(

気象庁メソ解析の概要

解析手法:4次元変分法 解像度:10km,鉛直40層

同化に用いる観測データ:
 ラジオゾンデ、パイバル、航空機、船舶、ウィンドプロファイラー、ドップラーレーダー、静止気象衛星、極軌道衛星などからの風、気温、水蒸気量、降水量に関するデータ

●疑似観測データ:

台風域内については、台風中心位置、中心気圧、強風 半径、地上気圧観測データに基づいて作成した人工的 データ

気象庁メソ解析値を利用した検証

(渦軸傾斜254事例,地上風非対称190事例)↓

2004-2007年の台風シーズン(

中心気圧(メソ解析vsベストトラック)

Best_Track

最大風速 (メソ解析vsベストトラック)

Best_Track

高比湿偏差の方位別出現頻度(気象庁メン解析)

2004-2007**年**↓

メソスケール鉛直流(飛行機観測の結果)

Eastin et al. $(2005) \downarrow$

温位場の非対称 (航空機観測)

All fields have

VWS vector

Reasor and Eastin (2011) \downarrow

観測で得られた鉛直シアーと渦軸傾斜

Reason and Eastin (2011) \downarrow

渦軸傾斜の向きと上昇流最大方位の一致に 対する別の説明

Reasor and Eastin (2011) \downarrow

Wu et al. (2006) invoked a vorticity balance argument similar to Willoughby et al. (1984) and Bender (1997) which assumes vorticity advection tends to oppose stretching of vorticity. According to this argument, storm-relative asymmetric inflow should coincide with enhanced convergence where the flow impinges upon the eyewall. At low-levels Wu et al. found the location of this enhanced mesoscale convergence generally coincided with the downtilt direction and served as a favored region for ascent. \downarrow

Braun et al. (2006) showed a similar relationship between the direction of TC tilt and the wavenumber-1 potential temperature asymmetry in their moist numerical simulations. They noted that <u>despite latent heating downtilt</u>, a mesoscale cold anomaly may still arise there if the adiabatic cooling exceeds the latent heating (Zhang et al. 2002) or anomalous adiabatic warming occurs through subsidence on the uptilt side. \downarrow

メソスケールの下降流の有無はTC強度変化と 密接にリンクしているか?↓

Wong and Chan (2004) \downarrow