

可視画像 vs マイクロ波画像

台風0614号(Yagi)の事例1

アイウォール域の降水に非対称 をもたらす可能性のある要因

- ・ 台風移動に伴う境界層内の流れの非対称
 (Shapiro 1983)
- ・ 顕熱・潜熱フラックスの非対称
 (Tuleya and Kurihara 1984)
- 環境風の鉛直シアー (Bender 1997)
- 渦軸の傾き (Jones 1995)

鉛直シアーとの関係を本格的に 調べた最初の観測的研究

- Corbosiero and Molinari (2002)
- 電光観測(1985-99)のデータを利用
- ダウンシアー方向のやや左側で卓越
- Corbosiero and Molinari (2003)
- 移動方向右前方で卓越
- ・ 鉛直シアーと移動の間に系統的関係1

使用データの比較

[C&M vs Ueno (2007)]

◎対流活動度

- 電光データ(1985-99)
- 12h毎に回数を集計

◎鉛直シアー

- 200hPaと850hPaの半
 径500km平均風の差
- ECMWF全球解析
- 12hの中央値で代表

- RA解析雨量(2004)
- 毎時値をそのまま利用。
- 200hPaと850hPaの半
 径500km平均風の差
- 気象庁全球解析
- BT解析時刻に内挿。

降水非対称の解析に用いたデータ

- 障水(2004年)
 ・レーダー・アメダス解析雨量
 (精度は高いが中緯度に局在)
 解像度: 0.025 度緯度×0.03125 度経度
 - ・衛星推定雨量(AMSR-E, TMI)
 (精度はやや落ちるが低緯度をカバー)
 解像度: 0.25 度緯度×0.25 度経度
- ◎ 鉛直シアー (200hPa-850hPa)
- 気象庁全球解析
- ◎ 台風中心位置
- ベストトラック(太平洋台風センター)

Storm (2004)	Begin Time	Hours	Min.SLP	RAD- samples	SAT- samples	Landfall or not
CONSON	1800 UTC 06 Jun	109	960	16	4	Yes
CHANTHU	1800 UTC 10 Jun	54	975	0	3	No
DIANMU	1200 UTC 13 Jun	195	915	14	15	Yes
MINDULLE	0600 UTC 23 Jun	252	940	0	12	No
TINGTING	0000 UTC 26 Jun	192	955	0	20	No
KOMPASU	0000 UTC 14 Jul	54	992	0	3	No
NAMTHEUN	0000 UTC 25 Jul	186	935	12	13	Yes
MALOU	0000 UTC 04 Aug	18	996	6	0	Yes
MERANTI	1200 UTC 04 Aug	108	960	0	14	No
RANANIM	1200 UTC 08 Aug	102	950	0	5	No
MALAKAS	0000 UTC 11 Aug	60	990	0	10	No
MEGI	0600 UTC 16 Aug	96	970	7	8	Yes
СНАВА	1200 UTC 19 Aug	279	910	18	21	Yes
AERE	0000 UTC 20 Aug	144	955	0	7	No
SONGDA	0000 UTC 28 Aug	261	925	11	15	Yes
SARIKA	1800 UTC 04 Sep	54	980	0	6	No
HAIMA	0000 UTC 11 Sep	48	996	0	1	No
MEARI	1800 UTC 20 Sep	219	940	16	11	Yes
MA-ON	0600 UTC 04 Oct	135	920	6	9	Yes
TOKAGE	0000 UTC 13 Oct	183	940	15	11	Yes
NOCK-TEN	1200 UTC 16 Oct	228	945	0	16	No

陸塊の影響はあるか?

A slight preference for downshear left occurred in the storm core. The result was valid both over land and water. (**Corbosiero and Molinari 2002**).

・ 鉛直シアー以外にも波数1成分の非対称を もたらす要因がある (特に鉛直シアーが小さい場合に重要となる)

環境場の鉛直シアーが主要因である場合でも 応答としての降水分布が台風コア域の力学 や物理過程に依存する

) 解析方法に問題がある (データの精度、鉛直シアーの定義)1

Storm Heading relative to Shear (deg)

シアーと移動の関係を示す模式図

200-850hPaシアーの強さに基づいて降水非対称の 強さを診断できないか シアーの大きさと非対称降水の振幅間の 相関係数は RA、SAT それぞれのデータについて0.18、0.04 ↓ 鉛直シアーの強さと降水非対称の強さ(波数1振幅) の関係の定量化

降水非対称の生成機構

- 1) A balanced response to a tilted vortex that produces upward motion in the downtilt direction
- 2) The interaction of the vortex flow with temperature anomalies generated by vortex tilt, which produces upward motion 90. to the right of the tilt direction
- 3) Storm-relative asymmetric flow that produces lowlevel convergence and upward motion (low-level divergence and downward motion) where the relative flow is directed into (outward from) the eyewall.

Wu et al. (2006).

非対称鉛直流生成機構の候補

最初に直立した渦が傾斜していく過程で温度風バランス を達成しようとしてダウンチルト側に上昇流(断熱冷却)、 アップチルト側に下降流(断熱昇温)を生成する。1

AM2.

準定常的な傾斜を達成した渦の等温位面に沿って吹く1 回転風はアップチルト側からダウンチルト側に向かう側1 で上昇流、逆側で下降流となる。1

■ チルトの大きさ1

渦軸傾斜の模式図

台風渦についての温度風バランス

$$\left(f + \frac{2V}{r}\right)\frac{\partial V}{\partial p} = -\frac{R}{p}\left(\frac{\partial T}{\partial r}\right)_{p}$$

検証実験の概要

対象事例: 2004年に上陸した 2 つの台風 6時間毎の気象庁全球解析に基づいて数値積分を実行 (Chaba: 47初期値, Tokage: 31初期値)

 モデル:静力学,水平解像度20km,鉛直13層, f面(台風中心位置の緯度),断熱ラン, 非断熱ラン(凝結物質の移流なし)
 環境場:全球解析値を台風周辺域で平均したもの
 台風渦:中心気圧や強風半径を考慮して人工的に作成

鉛直シアーの大きさ(時系列)

波数1鉛直流の振幅比較

0.44→0.94

波数1鉛直流の振幅比較

Day

0.39→0.91

波数1鉛直流と降水の振幅比較

Day

波数1鉛直流と降水の振幅比較

Day

AM1説によれば降水非対称の強さは シアーだけでなく台風強度にも依存

RAデータについては渦の強さを考慮するこ とにより非対称降水の振幅との間の相関係 数が増加

0.18 →**0.39**

<u>現在のところAM1説を明確に支持するモデル1</u> 研究・観測的研究はない1

もう1つの問題点は<u>降水最大がダウンシアー</u>1 <u>直下から少し左側にずれるという観測事実を</u>1 <u>直接的には説明できない</u>こと1

渦軸傾斜(f面鉛直シアー実験6時間目)

マスシンク波数1成分の台風移動速度への換算

(Ueno 2003; Lackmann and Yablonsky 2004)

台風/時刻。	中心気 圧 (hPa)	非対称降水振 幅 (mm/h)	MS移動速 度 (m/s)	移動速度 の寄与率。
T0416 /0600 UTC 29 Aug	940	1.6	0.2	0.04
1200 UTC 29	940	1.6	0.2	0.06
1800 UTC 29	945	1.3	0.6	0.11
0000 UTC 30	950	3.6	0.7	0.10
0600 UTC 30	965	9.0	1.3	0.12
1200 UTC 30	970	9.1	1.1	0.07
1800 UTC 30	975	5.0	2.3	0.16
0000 UTC 31	975	6.1	1.8	0.09
T0423 /0600 UTC 19 Oct	950	2.5	0.5	0.06
1200 UTC 19	950	7.3	0.7	0.08
1800 UTC 19	950	6.5	0.8	0.07
0000 UTC 20	950	6.9	1.5	0.11
0600 UTC 20	955	15.9	2.3	0.14
1200 UTC 20	980	7.3	3.4	0.35

コア域降水強度の最大風速依存性

R&A.

コア域降水強度波数0成分と 波数1成分の関係

SAT.

R&A.